szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 17 kwi 2009, o 20:59 
Użytkownik

Posty: 6
zad.1 Przekątna kwadratu jest o 2 cm dłuższa od jego boku. Jaki obwód ma ten kwadrat?
zad.2 Przekątne trapezu równoramiennego dzielą kąty przy dłuższej podstawie na połowy i przecinają się pod kątem 120(stopni). Dłuższa podstawa ma 12 cm. Oblicz obwód tego trapezu.
zad.3 O ile zwiększy się długość przekątnej kwadratu, jeśli bok kwadratu zwiększymy o 2?
zad.4 O ile zwiększy się wysokość trójkąta równobocznego, jeśli bok trójkąta zwiększymy o 2?

Proszę o pomoc! Dostałam pałę z pracy klasowej, gdzie były tego typu zadania.. tzn. słyszałam, że były też maturalne. ;/ i po prostu chciałabym się dowiedzieć na poprawę jak się je liczy. Proszę baaardzo jeszcze raz i proszę też, żeby sposoby ich obliczania były "proste", tzn. na poziomie 2 gim. i wyjaśnione, dlaczego tak, a nie inaczej. ;) Próbowałam robić te zadania, ale miałam je źle wyliczone. Wyniki nie zgadzały się z odpowiedziami.

PROSZĘĘĘĘĘĘĘĘĘĘĘĘĘĘ!!!
i z góry dziękuję za pomoc. :)
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Kobieta Offline
PostNapisane: 17 kwi 2009, o 21:21 
Użytkownik

Posty: 729
Zadanie 1
d - przekątna
a - bok
d=a+2
z twierdzenia Pitagorasa wiemy, że a^2+a^2=d^2, czyli 2a^2=(a+2)^2. Rozwiązujemy równanie kwadratowe. \Delta=32=(4\sqrt{2})^2, a_1=2-2\sqrt{2}<0, więc odrzucamy i a_2=2+2\sqrt{2}
Czyli obwód wynosi 4(2+2\sqrt{2})
Góra
Mężczyzna Offline
PostNapisane: 17 kwi 2009, o 21:27 
Użytkownik

Posty: 88
Lokalizacja: Warszawa
to lecimy po kolei

zad.1 Przekątna kwadratu jest o 2 cm dłuższa od jego boku. Jaki obwód ma ten kwadrat?

Narysuj kwadrat, boki oznaczamy a, przekatna a+2. Wiemy ze przekatna kwadratu o boku a wynosi a\sqrt{2} (wynika to wlasnie z tw. pitagorasa).
Zatem a + 2 = a\sqrt{2}. Wyznaczyc a i pomnozyc razy 4 chyba sama bedziesz umiala:)


zad.2 Przekątne trapezu równoramiennego dzielą kąty przy dłuższej podstawie na połowy i przecinają się pod kątem 120(stopni). Dłuższa podstawa ma 12 cm. Oblicz obwód tego trapezu.

rozpisz sobie jak wygladaja wszystkie katy, utworza Ci sie trojkaty prostokatne rownoramienne, na pewno cos sama wymyslisz dalej to jest proste zadanie:)



zad.3 O ile zwiększy się długość przekątnej kwadratu, jeśli bok kwadratu zwiększymy o 2?

bok kwadratu- a
przekatna - a\sqrt{2}

zatem po zwiekszeniu bok - a+2
przekatna (a+2)\sqrt{2} wiec jesli mielismy a\sqrt{2} a mamy (a+2)\sqrt{2} to chyba juz sama "obliczysz" o ile:)


zad.4 O ile zwiększy się wysokość trójkąta równobocznego, jeśli bok trójkąta zwiększymy o 2?

bok - a
wysokosc - \frac{a\sqrt{3}}{2}

robisz analogicznie jak zadanie 3:) postaraj sie sama zrobic i zobaczymy co Ci wyjdzie
Góra
Kobieta Offline
PostNapisane: 17 kwi 2009, o 22:20 
Użytkownik

Posty: 6
czyli w tym zad.3 (a+2) \sqrt{2} = a \sqrt{2} + 2\sqrt{2} i co dalej? jak? wiem, że to pewnie wydaje się banalnie proste... ale czym bardziej się w to zagłębiam tym staje się to coraz trudniejsze...;/ Co ja właściwie tu obliczam?
Góra
Mężczyzna Offline
PostNapisane: 17 kwi 2009, o 23:48 
Użytkownik
Avatar użytkownika

Posty: 768
Lokalizacja: Biała Podlaska / MIMUW
wydaje mi się, że wyróżnik trójmianu kwadratowego poznaje się dopiero w liceum, a nie w gim:D

w zad3 masz obliczyć różnicę między "nową" a "starą" przekątną.
czyli będzie: a \sqrt{2}+2 \sqrt{2} -a \sqrt{2}= 2\sqrt{2}
Góra
Kobieta Offline
PostNapisane: 18 kwi 2009, o 12:24 
Użytkownik

Posty: 6
Więc jak obliczyć zad.1? Masakra. ;)
Góra
Mężczyzna Offline
PostNapisane: 18 kwi 2009, o 13:35 
Użytkownik
Avatar użytkownika

Posty: 768
Lokalizacja: Biała Podlaska / MIMUW
Popiolkas, przecież Ci napisał.
a-bok
a \sqrt{2} -przekątna
a+2-przekątna
czyli: a+2=a \sqrt{2}
a \sqrt{2}-a=2
a( \sqrt{2}-1)=2
a= \frac{2}{ \sqrt{2}-1 } usuwasz niewymierność:
a=2( \sqrt{2}+1)
Ob=4a=8( \sqrt{2}+1)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Przypomnienie twierdzenia o prostych w okręgu.  GluEEE  14
 Twierdzenie pitagorasa, obwody, pola  Agnieszka3243  1
 Twierdzenie Pitagorasa - zadanie 12  emilka2909  1
 Boki trójkąta i twierdzenia sinusów i cosinusów  Ghostek  6
 Twierdzenie pitagorasa zadanie  Matematyk90  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com