szukanie zaawansowane
 [ Posty: 9 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 9 wrz 2009, o 15:03 
Użytkownik

Posty: 24
Witam. Dzisiaj zaczęliśmy nowe temat z którego nic nie wyniosłem bo nie zrozumiałem tłumaczenia nauczycielki.. :( Prosiłbym o wytłumaczenie na np. zadaniu jak to obliczyć? Wzór na r małe i R duże, Pk i bok koła to znam.. Ale jakoś nie potrafię ich wykorzystać.

PRZYKŁAD: Oblicz pole i obwód koła wpisanego i opisanego na:

* trójkącie foremnym o boku 3cm.
*czworokącie foremnym o boku 6cm.
*sześciokącie foremnym o boku 4 cm.

Chociaż niech ktoś pokaże/pomoże zrobić I przykład to może resztę zrobię sam.. Zależy mi na tym bardzo bo będzie niedługo z tego kartkówka;/ Pzdr.
Góra
Kobieta Offline
PostNapisane: 9 wrz 2009, o 15:15 
Użytkownik

Posty: 3092
Lokalizacja: Opole
W pierwszej kolejności musisz obliczyć długość promienia a następnie wstawić do wzoru na pole lub obwód


1. Trójkat foremny to trójkąt równoboczny

promień okregu wpisanego - r
promień okręgu opisanego - R

r= \frac{1}{3}h

h= \frac{a \sqrt{3} }{2}

r= \frac{1}{3} \cdot \frac{a \sqrt{3} }{2} =  \frac{a \sqrt{3} }{6}


R= \frac{2}{3}h =  \frac{2}{3} \cdot  \frac{a \sqrt{3} }{2} =  \frac{a \sqrt{3} }{3}

a - długość boku


2. czworokąt foremny - kwadrat

r= \frac{a }{2}

R= \frac{1}{2}d

d - przekątna = a \sqrt{2}

R= \frac{1}{2}  \cdot a \sqrt{2} = \frac{a \sqrt{2} }{2}


3. sześciokąt foremny

r= \frac{a \sqrt{3} }{2}

R=a


podstaw długości do wzorów a otrzymasz długości promieni

P = \pi \cdot r^2

O = 2\pi \cdot r
Góra
Mężczyzna Offline
PostNapisane: 9 wrz 2009, o 16:21 
Użytkownik

Posty: 24
Możesz mi wytłumaczyć dlaczego musi być ten wzór?
h= \frac{a \sqrt{3} }{2}
-------------------------------------------
Zrobiłem coś takiego. Powiedz co jest źle.

r= \frac{a \sqrt{3} }{6}

r= \frac{3 \sqrt{3} }{6}

r= 2\sqrt{3}

Obliczyłem promień okręgu wpisanego.
-------------------
R= \frac{a \sqrt{3} }{3}

R= \frac{3 \sqrt{3} }{3}

R= \sqrt{3}

Obliczyłem promień okręgu opisanego.
-------------------
Pk= \prod_r^{2}

Pk= \prod_2 \sqrt{3}^2

Pk= \prod_4 \sqrt{3}

\prod_= 4 \sqrt{3}
--------------------

Obw= 2 \prod_R

Obw= 2 \prod_\sqrt{3}

A co dalej? bo nie ma pojęcia;/ Pomnożyć i wyjdzie: \sqrt {6}?? Weź odpisz
Góra
Kobieta Offline
PostNapisane: 9 wrz 2009, o 17:19 
Użytkownik

Posty: 3092
Lokalizacja: Opole
Bartasek napisał(a):
Możesz mi wytłumaczyć dlaczego musi być ten wzór?
h= \frac{a \sqrt{3} }{2}
-------------------------------------------

tego nie musi być. Ja Ci pokazałam jak wyprowadzić wzór na promień okręhu wpisanego i co z czego sie bierze.

Cytuj:
Zrobiłem coś takiego. Powiedz co jest źle.

r= \frac{a \sqrt{3} }{6}

r= \frac{3 \sqrt{3} }{6}

r= 2\sqrt{3}

Obliczyłem promień okręgu wpisanego.


r= \frac{3 \sqrt{3} }{6}

r= \frac{ \sqrt{3} }{2}



Cytuj:
R= \frac{a \sqrt{3} }{3}

R= \frac{3 \sqrt{3} }{3}

R= \sqrt{3}

Obliczyłem promień okręgu opisanego.



DOBRZE


Cytuj:
Pk= \prod_r^{2}

Pk= \prod_2 \sqrt{3}^2

Pk= \prod_4 \sqrt{3}

\prod_= 4 \sqrt{3}



ŹLE!!! pomijająć zły promień który obliczyłeś wczesniej to (2 \sqrt{3})^2 = 12

Cytuj:
Obw= 2 \prod_R

Obw= 2 \prod_\sqrt{3}

A co dalej? bo nie ma pojęcia;/ Pomnożyć i wyjdzie: \sqrt {6}?? Weź odpisz



ABSOLUTNIE!!!!! tego nie mnozymy tylko porzadkujemy 2 \sqrt{3} \pi
Góra
Mężczyzna Offline
PostNapisane: 9 wrz 2009, o 17:28 
Użytkownik

Posty: 24
To może daj jakiś prosty przykład i go rozwiąże. Bo chciałbym na jutro to potrafić zrobić :)
A czworokąt i sześciokąt robimy tak samo? Czy inny wzór?

I jak możesz napisz poprawnie to z \prod_
Góra
Kobieta Offline
PostNapisane: 9 wrz 2009, o 17:41 
Użytkownik

Posty: 3092
Lokalizacja: Opole
Bartasek napisał(a):
To może daj jakiś prosty przykład i go rozwiąże. Bo chciałbym na jutro to potrafić zrobić :)
A czworokąt i sześciokąt robimy tak samo? Czy inny wzór?

I jak możesz napisz poprawnie to z \prod_



przecież w pierwszej odpowiedzi napisałam Ci wzory na promienie okręgów wpisanych i opisanych dla tgrójkata, czworokata i sześciokata (oczywiscie foremnych)
Góra
Mężczyzna Offline
PostNapisane: 9 wrz 2009, o 17:53 
Użytkownik

Posty: 24
A racja, mój błąd. A jak wyliczyć te \prod_
Napisz może także jak obliczyć Obwód abym błędu nie miał,
-------------------------------------------------------------
Będzie to wyglądało tak?

P= \prod_r^{2}

P= \prod_\sqrt{3}^2
. . . . . . . . \frac{}{2}

P=12 \prod
--------------------------
Ob= 2\prod R

Ob=2\cdot12\cdot\sqrt{3}

Ob=24 \sqrt{3}
Góra
Kobieta Offline
PostNapisane: 10 wrz 2009, o 09:22 
Użytkownik

Posty: 3092
Lokalizacja: Opole
1. zacznijmy od podstaw:

polek koła, ale obwód okręgu

\prod(znaczek którego ty błędnie uzywasz) to \pi (pi) które w przybliżeniu wynosi 3,14

2. nie umiesz podnosić do kwadratu pierwiastków i ułamków

(\sqrt{a} )^2 = a

\left(  \frac{ \sqrt{a} }{b} \right) ^2 =  \frac{a}{b^2}

3. Jeżeli w treści masz napisane że masz obliczyć obwod i pola kół opisanego i wpisanego to nie możesz do wzoru na pole wstawiać promienia okregu wpisanego a do wzoru na obwód promienia okręgu opisanego. zadanie jest wtedy zrobione połowicznie gdyz dla jednego masz pole a dla drugiego obwód.



TRÓJKAT FOREMNY (trójkąt równoboczny)

Okrąg wpisany

r= \frac{a \sqrt{3} }{6} = \frac{3 \sqrt{3} }{6}= \frac{ \sqrt{3} }{2}

P=\pi \cdot r^2 = \pi  \cdot   \left( \frac{ \sqrt{3} }{2}  \right) ^2 =  \frac{3}{4} \pi

Ob = 2\pi \cdot r = 2\pi \cdot \frac{ \sqrt{3} }{2} =  \sqrt{3}\pi


Okrąg opisany

R= \frac{a \sqrt{3} }{3} =  \frac{3 \sqrt{3} }{3} =  \sqrt{3}

P=\pi \cdot R^2 = \pi  \cdot   \left( \sqrt{3}   \right) ^2 =  3 \pi

Ob = 2\pi \cdot R = 2\pi \cdot \sqrt{3}  = 2 \sqrt{3}\pi


CZWOTOKĄT FOREMNY (kwadrat)

Okrąg wpisany

r= \frac{a}{2} = \frac{6}{2} = 3

P=\pi \cdot r^2 = \pi  \cdot   \left(  3  \right) ^2 =  9 \pi

Ob = 2\pi \cdot r = 2\pi \cdot 3 =  6\pi


Okrąg opisany

R= \frac{a \sqrt{2}} {2} =  \frac{6 \sqrt{2}} {2}   = 3 \sqrt{2}

P=\pi \cdot R^2 = \pi  \cdot   \left( 3\sqrt{2}   \right) ^2 =  18 \pi

Ob = 2\pi \cdot R = 2\pi \cdot 3\sqrt{2}  = 6 \sqrt{2}\pi



SZEŚCIOKĄT FOREMNY


Okrąg wpisany

r= \frac{a \sqrt{3} }{2} = \frac{4 \sqrt{3} }{2}= 2 \sqrt{3}

P=\pi \cdot r^2 = \pi  \cdot   \left( 2 \sqrt{3}   \right) ^2 =  12 \pi

Ob = 2\pi \cdot r = 2\pi \cdot  2\sqrt{3}  =  4\sqrt{3}\pi


Okrąg opisany

R= a =4

P=\pi \cdot R^2 = \pi  \cdot   \left( 4   \right) ^2 =  16 \pi

Ob = 2\pi \cdot R = 2\pi \cdot 4  = 8\pi
Góra
Mężczyzna Offline
PostNapisane: 10 wrz 2009, o 13:58 
Użytkownik

Posty: 24
a.. Czyli z tego co widzę błędnie podstawiałem do wzoru:/ Weź może daj jakąś liczbę do obliczenia dla:
*trójkąta równobocznego
*kwadratu
*sześcianu

Bo samemu to bezsensu wymyślać :/
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 9 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Wielokąty foremne - okręgi wpisane i opisane
zad.1 ustal, jakie promienie mają okręgi wpisane i opisane na : a) kwadracie o boku 8 m b) trójkącie równobocznym o boku 6 m zad. 2 jakie pole ma kwadrat opisany na okręgu o promieniu dłogości 2\sqrt{2} zad. 3 o ile wi...
 malinowapiana  2
 Okręgi przecinające się
Mamy dwa okręgi przecinające się o promieniach równych jeden. Można wyróżnić tu trzy pola (płaszczyzny) - P_1 to "indywidualne" pole pierwszego z kół, P_2 to powierzchnia wspólna obu...
 GCJA  5
 Dwa okręgi i równość kątów.
Dane są dwa okręgi o wspólnym środku O i średnicach odpwiednio AB i CD (punkty A,B,C,D i O są współliniowe oraz |AB|>|CD|). Punkt P leży na wewnętrznym półokręgu, punkt R leży na zewnętrznym półokręgu, punkty O,P i R są współliniowe. Udowodnij, że...
 Bartek1991  16
 okręgi na trójkącie
Środki 3 okręgów o promieniu równym 2 znajdują się w wierzchołkach trójkąta równobocznego o boku 2 √2 . Znajdź pole części wspólnej tych trzech okręgów Z góry dzięki za pomoc...
 gusia114  7
 Dwa okręgi... - zadanie 2
Dwa okręgi o(A, r1) i o(B, r2) są styczne zewnętrznie do siebie i oba są styczne wewnętrznie do okręgu o(C, r3). Obwód trójkąta ABC wynosi 25cm. Oblicz r3. Prosiłbym równiez o rysunek, jeżeli ktoś byłby w stanie, bo mam problem gdzie są te punkty A...
 damjack  1
 Wykazywanie, czworokąty i okręgi
Wykaż, że jeśli w czworokącie ABCD dwusieczne kątów przy wierzchołkach A i C przecinają dwusieczne kątów przy wierzchołkach B i D w czterech różnych punktach, to punkty te leżą na pewnym okręgu....
 fidget  14
 Okręgi styczne zewnętrznie - zadanie 11
Witam! Jak udowodnić, że środki dwóch okręgów stycznych zewnętrznie i ich punkt styczności leżą na jednej prostej? Pozdrawiam ...
 suchyy3006  1
 dwa okręgi styczne do siebie zewnętrznie wpisane w kwadrat
W kwadrat o boku długości 1 wpisano dwa okręgi do siebie styczne zewnętrznie (różne r). Każdy z tych okręgów jest styczny do dwóch sąsiednich boków kwadratu. Oblicz, ile wynosi suma długości promieni tych okręgów....
 lidka95  2
 wielokąty foremne - zadanie 4
Wyjaśnij, dlaczego możmna ułożyć posadzkę z samych trójkątów, czworokątów, sześciokątów foremnych, a nie można jej ułożyć z samych pięciokątów, ośmiokątów, dwunastokątów, dwudziestokątów foremnych....
 nogiln  1
 Wielokąty i ich własności
Boki trójkąta wyrazaja sie liczbami naturalnymi i dwa z nich są równe 1 cm i 7 cm. Obwód tego trójkąta wynosi: a) 14 cm b) 15 cm c) 16 cm d) 13 cm...
 emilka2909  1
 Okręgi w prostokącie
Mam problem z następującym zadaniem i proszę o naprowadzenie mnie na najprostszy sposób rozwiązania go. Oto ono: Prostokątny plac zabaw urządzony jest następująco: w kole o promieniu r _{1}=36m stycznym do trzech boków og...
 mat-fiz  3
 Okręgi - Jednokładność
Niech o_{1} (S_{1}, r_{1}) i o_{2} (S_{2}, r_{2}) będą okręgami o różnych promieniach. Wiemy ponadto, że r_{1} + r_{2} > |S_{1}S_{2}|. Pokazac, ...
 chlorofil  3
 Okręgi stycznie zewnętrnie oraz średnia
Dwa okręgi o środkach O_{1} i O_{2} oraz o promieniach r_{1} i r_{2} są styczne zewnętrznie. Poprowadzono prostą styczną do obydwu okr...
 gabilu  1
 okręgi i styczne - zadanie 3
mam problem z takimi zadaniami nie wiem jak do nich sie zabrac Dane są dwa przecinające sie okręgi oraz punkt P leżący na zewnątrz tych okręgów. Z punktu P poprowadzono prostą k styczną do okręgu O1 i prostą l styczną do okręgu O2. Punkt A jest pu...
 justysia1  0
 Okręgi: udowodnij, że punkty są współliniowe
Na płaszczyźnie dane są okręgi S_1 i S_2 przecinające się w punktach A i B. Przez punkt A poprowadzono pr...
 aniu_ta  8
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com