szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 8 kwi 2006, o 19:44 
Użytkownik

Posty: 12
Lokalizacja: Kraków
Mam takie zadanie za które sam nie wiem jak się zabrać, może ktoś spróbuje rozwiązać?

Dany jest trójkąt równoboczny T o boku długości a .Środek ciężkości tego trójkąta jest środkiem koła K o promieniu, którego długość jest średnią geometryczną promieni okręgów: wpisanego i opisanego na T.Oblicz pole figury: K - T .
Góra
Mężczyzna Offline
PostNapisane: 8 kwi 2006, o 20:32 
Użytkownik
Avatar użytkownika

Posty: 469
Lokalizacja: Kęty
Obrazek

|AB|=|BC|=|CA|=a
Trójkąt ABC jest równo boczny => kat CAB=60
|DC|=h
|Do|=r
|OC|=x

R- promień koła K
R=\sqrt{x*r} - śr. geometryczna

h=\frac{a\sqrt{3}}{2}

tg30=\frac{r}{\frac{a}{2}}
r=\frac{a\sqrt{3}}{6}

h=r+x
x=\frac{a\sqrt{3}}{3}
R=\frac{a\sqrt{6}}{6}

P_{K}=\frac{a^{2}}{6}

P_{ABC}=\frac{a^{2}\sqrt{3}}{4}

Teraz wystarczy tylko odjąć te pola.
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 06:31 
Użytkownik

Posty: 12
Lokalizacja: Kraków
Tu nie chodzi chyba o odjęcie pól, bo wychodzi inny wynik niż powinien. Odp. brzmi
a^2/4(pi/2 - 1).Może to trzeba zrobić inaczej nie wiem sam?
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 09:58 
Użytkownik
Avatar użytkownika

Posty: 469
Lokalizacja: Kęty
Wcześniej popełniłem błąd. P_{K}=\frac{a^{2}}{6}\pi.
"Oblicz pole figury: K - T".
K- to pole tego koła a T to pole trójkąta. Więc należy odjąć od pola koła pole trójkąta.


PS: Może popełniłem błąd w obliczeniach!?
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 16:26 
Użytkownik

Posty: 43
Lokalizacja: stąd
@robert179 jak sam zauważyłeś trzeba tu policzyć pole figury K-T, a nie różnicę pól figur!
Góra
Kobieta Offline
PostNapisane: 4 cze 2011, o 20:29 
Użytkownik

Posty: 1
Lokalizacja: NT
R-promień koła opisanego na trójkącie ABC
r-promień koła wpisanego w trójkąt
R=2r
r _{z} - promień koła K
Mamy duży trójkąt ABC wyznaczamy środek ciężkości tj. punkt przecięcia się dwusiecznych kątów tego trójkąta.
Trójkąt ABC podzielił się na 6 trójkątów prostokątnych.
P_{ABC}=\frac{a^{2} \cdot \sqrt{3}}{4}  
 P _{ \text{małego trójkąta ASD} }=  \frac{a ^{2}  \cdot  \sqrt{3}}{4}  \cdot  \frac{1}{6} = \frac{a ^{2}  \cdot  \sqrt{3}}{24}\\
 P _{ \text{małego trójkąta ASD} }=  \frac{1}{2}  \cdot   \frac{a}{2}  \cdot r =  \frac{a}{4}  \cdot r \\ \frac{a^{2} \cdot \sqrt{3}}{24} = \frac{a}{4}  \cdot r \\   r= \frac{a \sqrt{3} }{6}  \\
 r _{z}= \sqrt{R \cdot r}  \\
 r _{z}= \sqrt{2r \cdot r} \\
 r _{z}= \sqrt{2r ^{2} } \\
 r _{z}=  \frac{a \sqrt{6} }{6}

odc GC' - odcinek laczacy pkt przeciecia koła K z bokuAB trójkąta ABC z pkt styczności koła wpisanego w trójkąt z tym samym bokiem
z Pitagorasa wychodzi |GC'|=\frac{a \sqrt{3} }{6} =r trójkąt GC'S jest równoramienny a
\sphericalangle GC'S = 90^\circ  \sphericalangle GSC'=45 ^\circ  \sphericalangle GSH=90 ^\circ \\   \left( \text{H tj drugi pkt przeciecia kola K i boku AB} \right)  \\
 P _{K-T} = 3P _{\text{odcinka kolowego}} \\
 P _{K-T} = 3 \left(  \frac{90^\circ}{360s^\circ}  \cdot \pi  r _{z } ^{2} -  \frac{1}{2}  \cdot r _{z } ^{2} \cdot  \sin 90^\circ \\
 P _{K-T} =3 \left(  \frac{90^\circ}{360^\circ}  \cdot  \pi \frac{6a ^{2} }{36}  -  \frac{1}{2}  \cdot \frac{6a ^{2} }{36}  \cdot 1 =  \frac{a ^{2} }{4}  \left(  \frac{\pi}{2} - 1 \right)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Tröjkąt równoboczny. - zadanie 5
Oblicz długość boku trójkąta równobocznego, wiedząc, że jest ona o 2 cm większa od jego wysokości. Ja to zrobiłem tak: a = h - 2 \\ a = \frac{a \sqrt{3}}{2} - 2 \\ 2a= a\sqrt{3} - 4 \\ 2a - a\sqrt{3} = -4 \\ a(2-\sqrt{3}) = -4 ...
 soulforged  2
 Trójkąt równoboczny. - zadanie 3
Jak wyliczyć bok trójkąta równobocznego znając jego pole?...
 vodzi1  3
 Trójkąt równoboczny. - zadanie 2
Mam trójkąt równoboczny i przeciwprostokątna(a pierwiastek z 2) wynosi 2. Więc ile wynosi a ? Proszę o odpowiedź....
 qwerty007  3
 Trójkąt równoboczny. - zadanie 4
Konstrukcja trójkąta równobocznego na okręgu....
 GluEEE  2
 Trójkąt charakterystyczny
Chciałbym się w końcu nauczyć wyznaczania niewiadomych w tym trójkącie , ktoś mi pomoze ? w linku trójkąt. http://zapodaj.net/97f7128c877fc.jpg.html...
 axa96  2
 udowodnij, ze trojkat
zadanie z pozoru banalne... ale nie wiem jak mam sie za nie zabrac... tresc: Udowdnij, że trójkąt w którym dwie środkowe śą równej długości, jest równoramienny ?? to jest całe zadanie.......
 cinek88  1
 Trójkąt prostokątny wpisany i opisany na okręgu
Obwód trójkąta prostokątnego jest równy 168 cm, a promień koła wpisanego w ten trójkąt ma długość 10 cm. Oblicz długość promienia koła opisanego na tym trójkącie. Czy da się to zadanie zrobić ze wzoru na promień okręgu wpisanego w tr.prostokątny,a j...
 Sanni  3
 Trójkat abc
W trójkącie ABC dane są kąt ACB = 120* |AC|=6 |BC|=3 . Dwusieczna kąta ACBV przecina bok AB w punkcie D. Oblicz długość odcinka CD wiem ze to nie jest trudne zadanie ale CD wychodzi 2 i 4 i 6 a w odp jest tylko 2 i ja nie wiem gdzie robie błąd albo...
 mghy  2
 Trójkąt ...
Dany jest trójkąt o przyprostokątnych długości 3 i 4 . Zbudowano okrąg o środku O położonym na przeciwprostokątnej stycznej do dłuższej przyprostokątnej oraz przechodzący przez wierzchołek trójkąta przeciwległy do dłuższej przyprostokątnej . Oblicz ...
 Delvier  2
 Trójkąt prostokątny i ciąg geometryczny - zadanie 2
W trójkącie prostokątnym długości wysokości i środkowej poprowadzonej z wierzchołka kąta prostego oraz długość przeciwprostokątnej tworzą kolejne wyrazy ciągu geometrycznego, których iloczyn jest równy 8. Oblicz długość promienia okręgu wpisanego w t...
 lortp  1
 Trójkąt, okrąg wpisany. Obliczyć pole i dł promienia.
W trójkącie równoramiennym ABC podstawa AB ma długość 8cm. W trójkąt ten wpisano okrąg o. Punkty D i E są punktami styczności okręgu odpowiednio z ramionami AC i BC tego trójkąta, przy czym |DC|+|CE|=|DA|+|AB|+|BE|. Oblicz: a) pole trójkąta ABC, b) ...
 Adam_Mathe  1
 Gemoetria, równoległobok i trójkąt
1) W trójkącie ABC dane są: |...
 marcinn12  4
 Trójkąt 120stopni wpisany w okrąg
Bardzo proszę o pomoc jak ruszyć to zadanie. Nie wiem od czego zacząć. Na trójkącie równoramiennym rozwartokątnym o kącie 120 stopni opisano okrąg o promieniu długości 7 cm. Oblicz pole trójkąta....
 karolus  4
 Trójkąt prostokątny... - zadanie 3
Obawiam się, że: c= \sqrt{ \sqrt{7+3} } Pozdrawiam....
 klaudusqa  4
 wyprowadzić wzór na promien okręgu wpisanego w trójkąt
W trójkąt prostokątny o przyprostokątnych a i b wpisano okrag o promieniu r, który można wyliczyc ze wzroru r=\frac{ab}{a+b+ \sqrt{ a^{2}+ b^{2} } } wyprowadz ten wzór...
 kolega buahaha  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com