szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 8 kwi 2006, o 20:44 
Użytkownik

Posty: 12
Lokalizacja: Kraków
Mam takie zadanie za które sam nie wiem jak się zabrać, może ktoś spróbuje rozwiązać?

Dany jest trójkąt równoboczny T o boku długości a .Środek ciężkości tego trójkąta jest środkiem koła K o promieniu, którego długość jest średnią geometryczną promieni okręgów: wpisanego i opisanego na T.Oblicz pole figury: K - T .
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 8 kwi 2006, o 21:32 
Użytkownik
Avatar użytkownika

Posty: 469
Lokalizacja: Kęty
Obrazek

|AB|=|BC|=|CA|=a
Trójkąt ABC jest równo boczny => kat CAB=60
|DC|=h
|Do|=r
|OC|=x

R- promień koła K
R=\sqrt{x*r} - śr. geometryczna

h=\frac{a\sqrt{3}}{2}

tg30=\frac{r}{\frac{a}{2}}
r=\frac{a\sqrt{3}}{6}

h=r+x
x=\frac{a\sqrt{3}}{3}
R=\frac{a\sqrt{6}}{6}

P_{K}=\frac{a^{2}}{6}

P_{ABC}=\frac{a^{2}\sqrt{3}}{4}

Teraz wystarczy tylko odjąć te pola.
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 07:31 
Użytkownik

Posty: 12
Lokalizacja: Kraków
Tu nie chodzi chyba o odjęcie pól, bo wychodzi inny wynik niż powinien. Odp. brzmi
a^2/4(pi/2 - 1).Może to trzeba zrobić inaczej nie wiem sam?
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 10:58 
Użytkownik
Avatar użytkownika

Posty: 469
Lokalizacja: Kęty
Wcześniej popełniłem błąd. P_{K}=\frac{a^{2}}{6}\pi.
"Oblicz pole figury: K - T".
K- to pole tego koła a T to pole trójkąta. Więc należy odjąć od pola koła pole trójkąta.


PS: Może popełniłem błąd w obliczeniach!?
Góra
Mężczyzna Offline
PostNapisane: 9 kwi 2006, o 17:26 
Użytkownik

Posty: 43
Lokalizacja: stąd
@robert179 jak sam zauważyłeś trzeba tu policzyć pole figury K-T, a nie różnicę pól figur!
Góra
Kobieta Offline
PostNapisane: 4 cze 2011, o 21:29 
Użytkownik

Posty: 1
Lokalizacja: NT
R-promień koła opisanego na trójkącie ABC
r-promień koła wpisanego w trójkąt
R=2r
r _{z} - promień koła K
Mamy duży trójkąt ABC wyznaczamy środek ciężkości tj. punkt przecięcia się dwusiecznych kątów tego trójkąta.
Trójkąt ABC podzielił się na 6 trójkątów prostokątnych.
P_{ABC}=\frac{a^{2} \cdot \sqrt{3}}{4}  
 P _{ \text{małego trójkąta ASD} }=  \frac{a ^{2}  \cdot  \sqrt{3}}{4}  \cdot  \frac{1}{6} = \frac{a ^{2}  \cdot  \sqrt{3}}{24}\\
 P _{ \text{małego trójkąta ASD} }=  \frac{1}{2}  \cdot   \frac{a}{2}  \cdot r =  \frac{a}{4}  \cdot r \\ \frac{a^{2} \cdot \sqrt{3}}{24} = \frac{a}{4}  \cdot r \\   r= \frac{a \sqrt{3} }{6}  \\
 r _{z}= \sqrt{R \cdot r}  \\
 r _{z}= \sqrt{2r \cdot r} \\
 r _{z}= \sqrt{2r ^{2} } \\
 r _{z}=  \frac{a \sqrt{6} }{6}

odc GC' - odcinek laczacy pkt przeciecia koła K z bokuAB trójkąta ABC z pkt styczności koła wpisanego w trójkąt z tym samym bokiem
z Pitagorasa wychodzi |GC'|=\frac{a \sqrt{3} }{6} =r trójkąt GC'S jest równoramienny a
\sphericalangle GC'S = 90^\circ  \sphericalangle GSC'=45 ^\circ  \sphericalangle GSH=90 ^\circ \\   \left( \text{H tj drugi pkt przeciecia kola K i boku AB} \right)  \\
 P _{K-T} = 3P _{\text{odcinka kolowego}} \\
 P _{K-T} = 3 \left(  \frac{90^\circ}{360s^\circ}  \cdot \pi  r _{z } ^{2} -  \frac{1}{2}  \cdot r _{z } ^{2} \cdot  \sin 90^\circ \\
 P _{K-T} =3 \left(  \frac{90^\circ}{360^\circ}  \cdot  \pi \frac{6a ^{2} }{36}  -  \frac{1}{2}  \cdot \frac{6a ^{2} }{36}  \cdot 1 =  \frac{a ^{2} }{4}  \left(  \frac{\pi}{2} - 1 \right)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Trójkąt równoboczny. - zadanie 2
Mam trójkąt równoboczny i przeciwprostokątna(a pierwiastek z 2) wynosi 2. Więc ile wynosi a ? Proszę o odpowiedź....
 qwerty007  3
 Trójkąt równoboczny. - zadanie 3
Jak wyliczyć bok trójkąta równobocznego znając jego pole?...
 vodzi1  3
 Tröjkąt równoboczny. - zadanie 5
Oblicz długość boku trójkąta równobocznego, wiedząc, że jest ona o 2 cm większa od jego wysokości. Ja to zrobiłem tak: a = h - 2 \\ a = \frac{a \sqrt{3}}{2} - 2 \\ 2a= a\sqrt{3} - 4 \\ 2a - a\sqrt{3} = -4 \\ a(2-\sqrt{3}) = -4 ...
 soulforged  2
 Trójkąt równoboczny. - zadanie 4
Konstrukcja trójkąta równobocznego na okręgu....
 GluEEE  2
 Okrąg wpisany w trójkąt prostokątny - zadanie 4
Udowodnij, że punkt styczności okręgu wpisanego w trójkąt prostokątny z przeciwprostokątną dzieli tą przeciwprostokątną na odcinki, których iloczyn jest równy polu tego trójkąta....
 Revius  1
 wyznaczenie bokow, trójkąt prostokatny.
przeciwprostokątna...
 silverrevmod  3
 Koło wpisane w trójkąt - zadanie 5
Oblicz pole koła wpisanego w trójkąt o bokach 13cm,13cm,10cm. Z góry dziękuję za pomoc....
 Xerias  2
 Trójkąt. wysokość boku
Pole trójkąta jest równe 16,2 dm., a długość jednego z boków 25 cm. Oblicz wysokość odpowiadająca temu bokowi....
 monis:>  1
 Trójkąt prostokątny - zadanie 76
Boki trójkąta zawierają się w prostych równaniach : x-y+3=0 , 3x-y-7=0 , x+y-1=0 Wykaż, że trójkąt jest prostokątny. jak to obliczyć ?...
 kasiapuszka  1
 Trójkąt prostokątny / Znaleść jego długości boków
O to treść zadania: Obwód trójkąta prostokątnego wynosi24 cm, a jego pole - 24 cm^2. Oblicz długości boków tego trójkąta. Problem z ułożeniem poprawnego układu równań....
 AZS06  5
 3 zadania->trojkat
1. Bok trojkata rownobocznego jest srednica kola o promieniu r. Oblicz pole figury, ktora jest czescia wspolna kola i trojkata. 2. Napisz rownanie prostej, ktora przechodzi przez punkt A(2,4) i tworzy z osiami ukladu wspolrzednych trojkat o polu row...
 Carl0s  5
 trójkąt prostokątny - zadanie 44
w trójkącie prostokątnym okrąg o promieniu r jest tyczny do obu przyprostokątnych, a jego środek leży na przeciwprostokątnej i dzieli ją w stosunku m:n. Oblicz pole trójkąta...
 oslidz  2
 Kąty - trójkąt wpisany w okrąg
W okrąg wpisano trójkąt ABC, w którym \sphericalangle CAB = 55⁰, \sphericalangle ABC = 70⁰. Przez punkt C poprowadzono styczną do okręgu. Styczna ta przecina prze...
 Miskov  0
 trójkąt - trzy wysokości
W trójkącie dwa boki mają długość 3 cm i 4 cm. Długość trzeciego boku jest większa od długości dwóch pozostałych boków. Długości wysokości w tym trójkącie są trzema kolejnymi wyrazami ciągu arytmetycznego. Oblicz pole tego trójkąta oraz długości prom...
 dawido000  2
 trojkat prostokatny - zadanie 16
Jak obliczyc dlugosc przeciwprostokatnej w trojkacie prostym jezeli przyprostokatne wynosza 0,8 m i 0,6 m?...
 banana  3
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com