szukanie zaawansowane
 [ Posty: 9 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 18:51 
Użytkownik

Posty: 79
Lokalizacja: Rzeszów
Witam mam problem z wyznaczeniem dziedziny w poniższym równaniem:
\sqrt{x-1+ \sqrt{x+2} }=3
Bede wdzieczny za napisanie co trzeba policzyc i jakia jest ta dziedzina!
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 19:11 
Użytkownik

Posty: 293
Lokalizacja: Białystok
D = \{x \in R : x+2>=0  \wedge x-1+ \sqrt{x+2} >= 0\}

Musisz rozwiązać obie nierówności i wyznaczyć ich część wspólną.
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 19:20 
Użytkownik

Posty: 79
Lokalizacja: Rzeszów
Ok i tak właśnie zrobiłem tylko ze w tej drugiej nierówności coś mi chyba źle wychodzi więc jak byś mógł to napisz jakie jest jej rozwiązanie!
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 19:32 
Użytkownik
Avatar użytkownika

Posty: 363
Lokalizacja: Tuchów
x-1+ \sqrt{x+2}  \ge  0
(x+2) ^{ \frac{1}{2} }  \ge 1-x podnosimy do kwadratu
x+2 \ge x ^{2} -2x +1
x ^{2} -3x-1 \le 0
(x- \frac{3- \sqrt{13} }{2})(x- \frac{3+ \sqrt{13} }{2})  \le 0

czyli wychodzi x  \in <\frac{3- \sqrt{13} }{2},\frac{3+ \sqrt{13} }{2}>

Chyba tak powinno być xD

Teraz powinno być juz dobrze
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 19:43 
Użytkownik

Posty: 79
Lokalizacja: Rzeszów
O ile mnie wzrok nie myli to w czwartej linijce jest błąd!
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 19:47 
Użytkownik
Avatar użytkownika

Posty: 363
Lokalizacja: Tuchów
no tak, juz poprawie
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 20:04 
Użytkownik

Posty: 79
Lokalizacja: Rzeszów
W tym końcowym przedziale zapomniałeś podzielić przez 2 ale to juz chyba przeoczenie! Mi też tak wyszło czyli jednak się nie pomyliłem tylko że w odpowiedziach jest napisane że rozwiązaniem tego głównego równania jest liczba 7 ale z naszych wyliczeń wynika że 7 nie należy do dziedziny! I teraz to już głupieje trochę :)
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 20:19 
Użytkownik
Avatar użytkownika

Posty: 363
Lokalizacja: Tuchów
no to nie wiem może te nierówności co Goter podał nie są poprawne xD
Góra
Mężczyzna Offline
PostNapisane: 10 paź 2009, o 21:28 
Użytkownik

Posty: 293
Lokalizacja: Białystok
Ja zrobiłem dobrze. To ty podnosisz nierówność obustronnie do kwadratu, czego nie można robić, bo wychodzą głupoty ;d

np. takie coś:
3 > -5 po podniesieniu obustronnie do kwadratu da tobie 9 > 25, czyli widać że coś nie tak, prawda? w tym miejscu co podnosisz obustronnie do kwadratu powinieneś rozpatrzyć dwa przypadki:
1. 1-x>=0, wtedy możesz podnieść obustronnie do kwadratu, nie otrzymując sprzeczności
2. 1-x<0, wtedy nierówność jest w oczywisty sposób spełniona, więc cały ten przedział należy do dziedziny.

Jak policzysz w ten sposób, to dziedzina wyjdzie ci poprawna.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 9 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Równanie kwadratowe z pierwiastkiem  Trampek  2
 Równanie kwadratowe z pierwiastkiem - zadanie 3  Hebo  8
 Równanie kwadratowe z pierwiastkiem - zadanie 4  vcppp_p  2
 Równanie kwadratowe z pierwiastkiem - zadanie 6  PHNX  6
 Równanie kwadratowe z pierwiastkiem - zadanie 7  dorota12  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com