szukanie zaawansowane
 [ Posty: 13 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 27 paź 2009, o 22:10 
Użytkownik

Posty: 19
Lokalizacja: Pułtusk
1. W trapezie równoramiennym wysokość ma 16 cm, przekątne są do siebie
prostopadłe, a ich punkt wspólny dzieli każdą z nich na odcinki, których stosunek
wynosi 3 : 5. Oblicz obwód tego trapezu.

2. Obwód trapezu równoramiennego jest równy 30 cm, a odcinek łączący środki
przekątnych trapezu ma długość 1,5 cm. Wiedząc, że w ten trapez można wpisać
okrąg, oblicz: (
a) długości podstaw trapezu
b) długość średnicy okręgu wpisanego w ten trapez
c) długość odcinka łączącego punkty styczności ramion z tym okręgiem
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Kobieta Offline
PostNapisane: 27 paź 2009, o 22:16 
Użytkownik

Posty: 16195
2. Już raz tutaj rozwiązałam:
post552546.htm
18 paź 2009, o 23:07
Góra
Mężczyzna Offline
PostNapisane: 27 paź 2009, o 22:23 
Użytkownik

Posty: 19
Lokalizacja: Pułtusk
Nom 2 mam :)
Bym prosił o 1 bardziej rozpisane wiem jest tutaj

144058.htm

Ale ogólnie i nie mogę złapać o co chodzi
Góra
Kobieta Offline
PostNapisane: 27 paź 2009, o 22:56 
Użytkownik

Posty: 16195
1.
Obrazek
h=16

Obliczam h_1 i h_2
\begin{cases} h_1+h_2=h \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1+h_2=16 \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1=10 \\ h_2= 6\end{cases}

Obliczam podstawy trapezu
a=2h_1 \Rightarrow a=10 \cdot 2=10
b=2h_2 \Rightarrow b=6 \cdot 2=12

Obliczam x
x^2=h_1^2+h_1^2
x^2=10^2+10^2
x^2=200
x=10 \sqrt{2}

Obliczam y
y^2=h_2^2+h_2^2
y^2=6^2+6^2
y^2=72
y=6 \sqrt{2}

Obliczam |BC|
|BC|^2=x^2+y^2
|BC|^2=200+72
|BC|=4 \sqrt{17}

Obwód ze wzoru
Góra
Mężczyzna Offline
PostNapisane: 27 paź 2009, o 23:59 
Użytkownik

Posty: 19
Lokalizacja: Pułtusk
thx

-- 27 paź 2009, o 23:07 --

thx
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:04 
Użytkownik

Posty: 76
Lokalizacja: Warszawa
anna_ napisał(a):
1.
Obrazek
h=16

Obliczam h_1 i h_2
\begin{cases} h_1+h_2=h \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1+h_2=16 \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1=10 \\ h_2= 6\end{cases}

Obliczam podstawy trapezu
a=2h_1 \Rightarrow a=10 \cdot 2=10
b=2h_2 \Rightarrow b=6 \cdot 2=12

Obliczam x
x^2=h_1^2+h_1^2
x^2=10^2+10^2
x^2=200
x=10 \sqrt{2}

Obliczam y
y^2=h_2^2+h_2^2
y^2=6^2+6^2
y^2=72
y=6 \sqrt{2}

Obliczam |BC|
|BC|^2=x^2+y^2
|BC|^2=200+72
|BC|=4 \sqrt{17}

Obwód ze wzoru


Sorry, że odgrzewam, ale nie rozumiem dlaczego jest:
\begin{cases} h_1+h_2=h \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1+h_2=16 \\  \frac{h_2}{h_1} = \frac{3}{5}  \end{cases}
\begin{cases} h_1=10 \\ h_2= 6\end{cases}
czemu \frac{h_2}{h_1} = \frac{3}{5}
skoro ten stosunek tyczy się przekątnych
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:09 
Użytkownik

Posty: 20758
Lokalizacja: piaski
Podobieństwo trójkątów - górnego i dolnego.
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:14 
Użytkownik

Posty: 76
Lokalizacja: Warszawa
ale czumy przekątna też ma stosunek 3/5?
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:19 
Użytkownik

Posty: 20758
Lokalizacja: piaski
proquest napisał(a):
ale czumy przekątna też ma stosunek 3/5?

proquest napisał(a):
skoro ten stosunek tyczy się przekątnych

No to skąd wiedziałeś, że dotyczy przekątnych ?
Nie odpowiadaj tylko zadanie przeczytaj.
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:44 
Użytkownik

Posty: 76
Lokalizacja: Warszawa
[quote="proquest"][quote="anna_"]1.
a to jak wyszło?
\begin{cases} h_1=10 \\ h_2= 6\end{cases}
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:48 
Użytkownik

Posty: 20758
Lokalizacja: piaski
h_1+h_2=16 do tego stosunek tych wysokości.

Osobiście w zadaniach ze stosunkami proponuję mniej oznaczeń.
Wysokości 3x i 5x; skoro 3x+5x=16 to mamy je od razu.
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:54 
Użytkownik

Posty: 76
Lokalizacja: Warszawa
dobra ostatnie pytenie za które będę wdzieczny. skąd wiadomo, że połowa a to h1 i połowa b to h2?
Góra
Mężczyzna Offline
PostNapisane: 6 lis 2011, o 22:56 
Użytkownik

Posty: 20758
Lokalizacja: piaski
Trapez równoramienny, przekątne prostopadłe --> gdzieś trójkąty prostokątne równoramienne.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 13 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Pole i wysokość rombu - zadanie 2  loooz  1
 wysokość wieży - zadanie 2  karrina  0
 Pole trapezu, podane: wysokość i przekątna  gazelka15  1
 miara kąta alfa w trapezie równoramiennym  RudaMa?aWied?ma  6
 Trójkąt równoboczny - pole i wysokość  myszka666  6
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com