szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 29 wrz 2006, o 00:58 
Użytkownik

Posty: 4604
Lokalizacja: Kraków
Czy liczby ponizej zapisane mogą byc (ewnetualnie po zamianie ich miejscami) kolejnymi wyrazami pewnego ciagu arytmetycznego lub geometrycznego:
x, [x], \{x \}

[ Dodano: 29 Wrzesień 2006, 02:00 ]
ps. Uwaga: czy jeśli w tresci zadania opuscimy słowo "kolejnymi", to wynik bedzie inny...?!
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 29 wrz 2006, o 01:09 
Gość Specjalny
Avatar użytkownika

Posty: 2357
Pytanie podobnej treści było na konkursie szkolnym w liceum do którego chodziłem :)
Jeżeli miałby to być ciąg arytmetyczny, a wyrazy w tej kolejności, to odpowiedź jest pozytywna: 1 \frac{1}{2} {  , 1 , \frac{1}{2}. Dojście do tego nie jest trudne, ale jeśli ktoś będzie chciał rozwiązanie to mogę podać ;)

PS: Skąd masz to zadanie?
Góra
Mężczyzna Offline
PostNapisane: 29 wrz 2006, o 23:43 
Użytkownik

Posty: 4604
Lokalizacja: Kraków
Tristan napisał:
Cytuj:
PS: Skąd masz to zadanie
? hm po prostu wymyslilem... :mrgreen: a jak bedzie z ciagiem geometrycznym ?
Góra
Mężczyzna Offline
PostNapisane: 30 wrz 2006, o 00:49 
Gość Specjalny
Avatar użytkownika

Posty: 1174
Lokalizacja: Jaworzno
Dla ciągu arytmetycznego jest jeszcze rozwiązanie x=0 :mrgreen: Zresztą jest to również poprawne dla ciągu geometrycznego :wink: Niestety z tego co mi wyszło licząc na szybko, nie istnieje inne rozwiązanie jeśli chodzi o ciąg geometryczny (ale rozpatrywałem tylko przypadek \{x\})
Góra
Mężczyzna Offline
PostNapisane: 30 wrz 2006, o 20:14 
Użytkownik
Avatar użytkownika

Posty: 1145
Lokalizacja: z Konopii
Ciąg geometryczny powstaje dla liczby złotego podziału: x \ = \ \frac{1+\sqrt{5}}{2} Masz wówczas [x] \ =\ 1 oraz \{x\}\ = \ \frac{\sqrt{5}-1}{2} \ = \ \frac{2}{\sqrt{5}+1}
Góra
Mężczyzna Offline
PostNapisane: 30 wrz 2006, o 21:28 
Gość Specjalny
Avatar użytkownika

Posty: 1174
Lokalizacja: Jaworzno
Heh. Faktycznie, Sir George ma rację. Głupio trochę bo banalny błąd zrobiłem (ale było późno, więc czuję się usprawiedliwiony :mrgreen: )
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Czy każda liczba parzysta większa od 2 może...  celtrun  8
 liczba postaci 777...7  Lidder  3
 Jak wywnioskować, że liczby są kwadratami liczba naturalnych  mariolka0303  4
 Cecha podzielności przez 3 i 9  PiotrekPL  0
 wykaż że jest liczbą złożoną  shems1988  7
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com