szukanie zaawansowane
 [ Posty: 2 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 18 kwi 2010, o 16:15 
Użytkownik

Posty: 318
Lokalizacja: Poznań
kąt dwuścienny między dwiema sąsiednimi ścianami bocznymi ostrosłupa prawidłowego czworokątnego ma miarę 120
Znajdź miarę kąta nachylenia ściany bocznej do płaszczyzny podstawy
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Kobieta Offline
PostNapisane: 20 kwi 2010, o 18:38 
Gość Specjalny
Avatar użytkownika

Posty: 4561
Lokalizacja: Gdańsk
Obrazek
zielony trójkąt - zawiera kąt dwuścienny
czerwony trójkąt - zawiera kąt nachylenia ściany bocznej do podstawy
2a - krawędź podstawy
h - wysokość ściany bocznej
H - wysokość ostrosłupa
w - wysokość przekroju
k - krawędź boczna

1) Wysokość w przekroju dzieli ten trójkąt na 2 trójkąty o kącie 60^{\circ}, więc bok przekroju ma długość 2w. Z Pitagorasa liczymy, ile wynosi ten najkrótszy odcinek w zielonym przekroju:
w^2+x^2= \left( 2w\right)^2  \Rightarrow x=w \sqrt{3}
Ten odcinek to jednocześnie połowa przekątnej podstawy, więc:
w \sqrt{3}=a \sqrt{2}  \Rightarrow w= \frac{a \sqrt{6} }{3}

2) Pole ściany bocznej można wyrazić a\cdot h lub w\cdot k. Wiadomo, że:
a\cdot h= \frac{a \sqrt{6} }{3}\cdot k \\
a \sqrt{6}k=3a\cdot h  \Rightarrow h= \frac{ \sqrt{6} }{3}k

3) Teraz wyznaczmy a w zależności od k, patrząc na połowę ściany bocznej.
a^2+h^2=k^2 \\
a^2+ \left( \frac{ \sqrt{6} }{3} k \right)^2=k^2  \Rightarrow a= \frac{ \sqrt{3} }{3}k

4) Teraz zajmiemy się przekrojem osiowym ostrosłupa, żeby wyznaczyć H (znów z Pitagorasa):
a^2+H^2=h^2 \\
 \left( \frac{ \sqrt{3} }{3}  k\right) ^2+H^2= \left(  \frac{ \sqrt{6} }{3}k \right)^2 \\
H= \frac{ \sqrt{3} }{3}k

5) Mając H i h, możemy wyznaczyć sinus kąta.
sin\alpha= \frac{H}{h} \\
 \frac{ \frac{ \sqrt{3} }{3}k }{ \frac{ \sqrt{6} }{3}k }= \frac{ \sqrt{3} }{ \sqrt{6} = \frac{ \sqrt{18} }{6} }= \frac{ \sqrt{2} }{2}
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 2 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 kąt dwuścienny - zadanie 2
Proszę o zaznaczenie kąta między ścianami bocznymi w graniastosłupie prawidłowym z podstawą czworokąta....
 lofi  1
 Kąt dwuścienny - zadanie 3
Tylko że Kąt dwuścienny jest to kąt złożony z dwóch odcinków (zał. x) od wierzchołków trójkąta podstawy do ściany bocznej (padają pod kątem prostym), odcinek ten jest także wysokością ściany bocznej opadającą na krawędź....
 ann_mary  5
 Kąt dwuscienny
Krawedz podstawy i wysokosc sciany bocznej poprowadzona z wierzcholka ostroslupa prawidlowego czworokatnego maja dlugosci 2a. Oblicz cosinus kata dwusciennego meidzy sasiednimi scianami bocznymi. sporzadz rysunek pomocniczy i zaznacz na nim wymienion...
 lalkul  0
 kąt dwuścienny - zadanie 6
Dwa trójkąty równoramienne prostokątne mają wspólną podstawę AB o długości a. Półpłaszczyzny, w których zawierają się te trójkąty, tworzą kąt dwuścienny o mierze 60 stopni . Wyznacz odległość wierzchołków tych trójkątów....
 89hunter92  1
 kat dwuscienny - zadanie 2
Niestety nie moge uporać się z tym zadaniem: Graniastosłup prawidłowy czworokątny o krawędzi podstawy 3 cm przecięto płaszczyzną zawierającą przeciwległe krawędzie jego podstaw .Otrzymany przekrój tworzy z jedną ze ścian...
 likent10  2
 kat dwuścienny
1. podstawą graniastosłupa prostego jest trójkat prostokątny o przyprostokątnych długości 7cm i 24 cm. podaj miary kątów między sąsiednimi ścianami bocznymi tego graniastosłupa. 2. dany jest graniastosłup prawidłowy czworokątny którego pole powier...
 karrina  2
 Kąt dwuścienny - zadanie 7
Punkty M i N leza na jednej scianie kata dwusciennego i sa oddalone od jego krawedzi odpowiednio o 24 cm i 40 cm. Odleglosc punktu N od drugiej sciany tego kata dwusciennego jest rowna 15 cm. Oblicz odleglosc punktu M od tej sciany Nie mam zielonego...
 monika3246  1
 kąt dwuścienny - zadanie 10
W ostrosłupie prawidłowym trójkątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Oblicz miarę kąta dwuściennego, jaki wyznaczają ściana boczna z podstawą. dziwne ...
 Roudin  2
 kat dwuscienny - zadanie 3
kat dwuscienny miedzy dwiema sasiednimi scianami bocznymi ostroslupa prawidlowego czworokatnego jest = 120 stopni. wyznacz sinus kata sciany bocznej ostroslupa przy podstawie...
 0516  0
 Kąt dwuścienny - zadanie 11
Witam. 1. Znając tylko kąt dwuścienny w ostrosłupie prawidłowym (ewentualnie długość podstawy) mogę obliczyć jaki kąt jest na "czubku" ściany bocznej? Jakoś te dwa kąty są razem ze sobą powiązane? 2. W trójkącie równoramiennym tylko wysok...
 bartii  1
 kat dwuscienny
Moglby ktos opisac mi jak sie liczy kat dwuscienny? ;d...
 greey10  0
 Kąt dwuścienny - zadanie 4
Dany ostrosłup prawidłowy czworokątny krawędź podstawy ma długość 3cm kąt dwuścienny miedzy sąsiednimi ścianami bocznymi to 120* Oblicz długość krawędzi bocznej. Dzięki za pomoc...
 maciej2310  1
 kąt dwuścienny - zadanie 8
Dane są dwa przystające romby ABCD i DCEF o wspólnym boku DC długości 4 cm. Miara kątów ostrych tych rombów jest równa |kąt ADC| = |DCE|= 45 stopni. Płaszczyzny zawierające te romby tworzą kąt dwuścienny o mierze 120 stopni. Oblicz odelgłość miedzy p...
 ziommus  1
 Kąt Dwuścienny
1.Przekątna podstawy ostrosłupa prawidłowego czworokątnego ma długość 6 cm. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 45^{o}. Oblicz objętość tego ostrosłupa. 2.Krawędź boczna ostros...
 multipio  3
 Kąt dwuścienny - zadanie 9
Zadania z książki do 3 klasy liceum z wyd. Nowa Era, poziom podst.+rozsz., aczkolwiek zadanie podobno z podstawy, śmiech : 3/126 Graniastosłup prawidłowy czworok...
 gwin2  12
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com