[ Posty: 6 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 8 sty 2011, o 15:46 
Użytkownik

Posty: 16
Lokalizacja: Kraków
witam
prosze o pomoc wtakim zadaniu
Wykazać ze dla dowolnych nieosobliwych macierzy A i B tego samego stopnia jest spełniony wzór (AB)^(-1)= B^(-1) * A^(-1).
Dziękuje za pomoc
Góra
Mężczyzna Offline
PostNapisane: 8 sty 2011, o 16:10 
Gość Specjalny
Avatar użytkownika

Posty: 7119
Lokalizacja: Ruda Śląska
Dość oczywista wskazówka:
(AB)^{-1} (AB)=I
i teraz spróbuj pozbyć się tego AB
Góra
Kobieta Offline
PostNapisane: 10 sty 2011, o 23:42 
Użytkownik

Posty: 16
Lokalizacja: Kraków
czy może mi ktos sprawdzic dowod czy dobrze go przeprowadziłam

A \cdot B macierz nieosobliwa co wynika z tego że det(A \cdot B)= det A  \cdot detB a to jest na pewno różne od zera z założenia ze A, B macierze nieosobliwe

skoro macierz A \cdot B jest nieosobliwa to ma macierz odwrotną czyli AB ^{-1}

AB=BA=I

skoro macierz A jest nieosobliwa to ma macierz odwrotną czyli
B=A^{-1}

skoro macierz B jest nieosobliwa to ma macierz odwrotną czyli
A=B^{-1}

A \cdot B= B^{-1}  \cdot  A \cdot {-1}\\

AB \cdot (AB)^{-1}=I
czyli
B^{-1}  \cdot  A \cdot {-1}  \cdot  (AB)^{-1}=(AB)^{-1} \cdot [ B^{-1}  \cdot  A^{-1}]
stad wynika że
(AB)^{-1}= B^{-1}  \cdot  A^{-1}

DZIEKUJE:)
Góra
Mężczyzna Offline
PostNapisane: 10 sty 2011, o 23:48 
Gość Specjalny
Avatar użytkownika

Posty: 7119
Lokalizacja: Ruda Śląska
Cytuj:
AB=BA=I

skoro macierz A jest nieosobliwa to ma macierz odwrotną czyli
B=A^(-1)

skoro macierz B jest nieosobliwa to ma macierz odwrotną czyli
A=B^(-1)

A to skąd się wzięło? (Szczególnie ta pierwsza równość).
Góra
Kobieta Offline
PostNapisane: 11 sty 2011, o 00:47 
Użytkownik

Posty: 16
Lokalizacja: Kraków
AB=BA=I( to jest i nie jeden)
a to sie wzieło stad
Macierz A nazywamy macierza nieosobliwa jesli istenieje taka macierz B ze
A*B=B*A=I


to co w nawiasach to tez jest wziete z definicji macierzy nieosobliwych

http://docs.google.com/viewer?a=v&q=cac ... PU-SyqMaWA
Góra
Mężczyzna Offline
PostNapisane: 11 sty 2011, o 01:07 
Gość Specjalny
Avatar użytkownika

Posty: 7119
Lokalizacja: Ruda Śląska
To się zgadza, ale jak rozpatrujesz wyłącznie macierz A, a nie jakieś inne. Równie dobrze można powiedzieć, że A jest nieosobliwa, jeśli istnieje taka macierz U, że AU=UA=I. Natomiast w tym zadaniu macierze A i B nie muszą mieć ze sobą nic wspólnego.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Macierz nieosobliwa
Wystarczy policzyć wyznacznik takiej macierzy w zależności od t i przyrównac go do zera (potem rozwiążesz równanie). To bardzo proste. Macierz jest nieosobliwa oczywiśce wtedy, gdy jej wyznacznik jest różny[/b...
 trini88  2
 Macierz nieosobliwa - zadanie 5
Niech B będzie macierzą kwadratową taką że B^{3} = 0 Udowodnij, że macierz A = I -B jest nieosobliwa. Prosiłabym o rozwiązanie, albo chociaż o wskazówkę....
 esenna  3
 macierz nieosobliwa - zadanie 2
Niech macierze A,B,A + B będą nieosobliwe. Udowodnij, że (A^{-1} + B^{-1} )^{-1} = B(A + B)^{-1}A....
 misiekprezes  1
 macierz nieosobliwa - zadanie 4
Znajdz zbiór tych liczb zespolonych z dla których macierz : A=\left jest nieosobliwa. Oblicz A^{-1} dla [te...
 Hondo  9
 macierz funkcji sinus
Witam, bardzo proszę o pomoc z zadaniem: Znajdź macierz \sin \left( \frac{ \pi }{2} A \right) dla A=\begin{bmatrix} 1&2\\3&2\end{bmatrix}...
 novaline  10
 macierz 7x7
Czy dla dowolnej macierzy kwadratowej wymiaru 7 \times 7 podany warunek jest równoważny temu, że \det A = 0? b) wektor (1,1,1,1,1,1,1) jest wektorem włas...
 withdrawn  1
 Wykazać, że odwzorowanie jest liniowe i wyznaczyć macierz.
Należey wyazać, że odwzorowanie jest liniowe i wyznaczyć macierze tego odwzorowania, jeśli dana jest baza dziedziny tego odwzorowani, a baza przeciwdziedziny jest bazą kanoniczną: f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: f[(x_...
 herfoo  1
 macierz i działania na niej (dowody)
Dowody o macierzach Liczbie\ zespolonej\ przypisujemy\ macierz\\ z=a+bi \\ \begin{bmatrix} a & -b\\ b & a \end{bmatrix} \\ \\ Pokaz,\ ze \\ A_{\bar{z}}} = A_z^T \\ A_zA_w = A_{zw}\\ (A_z)^{-1} = A_{z-1}...
 matinf  26
 Wyznacznik - macierz 5 stopnia
\left|\begin{array}{ccccc}3&2&0&0&0\\0&3&2&0&0\\0&0&3&2&0\\0&0&0&3&2\\2&0&0&0&3\end{array}\right| Dobrze robię? 3 \cdot (...
 Folmi  1
 znaleźć macierz z wektorów własnych
Znaleźć macierz A mając dane wartości własne \lambda _{i} i odpowiadające tym wartościom wektory własne X _{i} \lambda _{1}=-1 \lambda _{2}=1[/tex:...
 Fundak  1
 macierz jednostkowa - zadanie 4
Cześć pomoże ktoś rozwiązać to zadanie: A^{3}+5A+ 6I , \ gdzie \ A=\left , I jest macierzą jednostkową....
 shakurx  4
 macierz 2x2
gdyby ktoś mógł mi pomoc, dojść do rozwiązania... Wiem jak robi sie macierz 2x2 jednak tu nie chce mi wyjsc... wiem że mnozy się na krzyż i odejmuje... ale wynik mi w kazdym razie nie wychodzi... wynik ma wyjść 5+21i \left[\begin{array...
 mili_mali  6
 Macierz równa macierzy do niej odwrotnej
Natknąłem się niedawno na macierz z dość ciekawą właściwością: A=\begin{bmatrix} 0&2&3&4&-8\\1&1&3&4&-8\\1&2&2&4&-8\\1&2&3&3&-8\\1&2&3&4&-9\end{bmatrix}[/...
 ciger  6
 Obliczyć macierz odwrotną - zadanie 3
\left Obliczyć macierz odwrotną. Jakieś dziwne liczby mi wychodzą także pytam tutaj o wynik. ...
 adrian7_1990  1
 macierz - wartości własne, wektory własne
Dana jest macierz A = \begin{bmatrix} 1&0&1&0&1&0&1&0&1 \\ 2&1&0&1&0&1&0&1&0 \end {bmatrix} a) obliczyć macierz AA ^{t} b) obli...
 vanish468  1
cron
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com