szukanie zaawansowane
 [ Posty: 3 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 12 kwi 2011, o 20:24 
Użytkownik

Posty: 21
Lokalizacja: Ruda Śląska
Mam sprawdzić, czy wektor \left[ \begin{array}{ccc}1\\2\\0\\5\end{array}\right] można przedstawić jako kombinację liniową wektorów:
v1=\left[ \begin{array}{ccc}-1\\0\\3\\1\end{array}\right] v2=\left[ \begin{array}{ccc}1\\-1\\-3\\0\end{array}\right] v3=\left[ \begin{array}{ccc}0\\1\\-3\\-2\end{array}\right]
Jak się za to zabrać?
Góra
Mężczyzna Offline
PostNapisane: 12 kwi 2011, o 20:48 
Użytkownik

Posty: 221
Lokalizacja: POL
Policz wyznacznik. Jak wyjdzie zero, to będzie oznaczało, że chociaż jeden z wektorów jest liniowo zależny.
Góra
Mężczyzna Offline
PostNapisane: 12 kwi 2011, o 20:56 
Użytkownik

Posty: 21
Lokalizacja: Ruda Śląska
A jak obliczyć tą kombinację?
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 3 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Kombinacja liniowa wektorów - zadanie 7
Wyznaczyć wektor \vec{u} jako kombinację liniową wektorów \vec{a} = , \vec{b}= , \vec{c} = , jeżeli wiadomo, ż...
 madejpan  2
 kombinacja liniowa wektorów - zadanie 4
Przedstaw wektor x=(0,3,12,9) jako kombinację liniową wektorów g1=(1,0,1,2), g2=(0,1,2,0), g3=(-1,0,1,1) g4=(0,1,4,3). Czy takie przedstwienie jest możliwe? czy jest jednoznaczne? Robię z tego układ ale coś mi nie wychodzi, więc proszę ...
 miki_czchow  3
 kombinacja liniowa wektorów - zadanie 3
proszę o pomoc: dla jakiego a\in R wektor \left jest kombinacją liniową wektorów \left...
 martynka88  2
 Kombinacja liniowa wektorów - zadanie 6
Przedstaw wektor {4 \choose -2} jako kombinację liniową wektorów {1 \choose 1}i {-1 \choose 1} Czy tutaj chodzi o rozwiązanie układu rownań: \lambda_1 - \lambda_2 = 4 \\ \lam...
 Tomek_Z  2
 kombinacja liniowa wektorów - zadanie 9
Witam W tym roku zaczęłam studia na kierunku matematyka, a liceum skończyłam na profilu humanistycznym, a co za tym idzie juz od początku mam pewne braki. Stąd moja...
 freevolity  3
 Kombinacja liniowa wektorów - zadanie 5
Witam! Proszę o pomoc w rozwiązaniu zadania: Przedstaw wektor x= w postaci kombinacji linowej wektorów bazowych a=, b=, c= Kompletnie nie wiem jak to ugryźć ...
 Iva  1
 kombinacja liniowa wektorów - zadanie 10
Dla jakich wartości a,b: 1)wektor (1,2,a) jest kombinacją liniową wektorów (4,3,4), \ (1,1,3) 2) wektor 3x^3+2x^2+4[/tex:...
 kalwi  3
 kombinacja liniowa wektorów - zadanie 2
Przedstawić wektor x= jako kombinacja liniowa wektorów u= a= i w=....
 ewelina19  1
 Kombinacja liniowa wektorów
Dane są wektory: a) a= , b= , c=; b) a= , b= , c=. Przedstaw wektor c jako kombinację liniową wektorów ai b ....
 Michal_Walczuk  1
 kombinacja liniowa wektorow - zadanie 2
Dane sa wektory a,b,c. Czy mozna przedstawic wektor c jako kombinacje liniowa wektorow a i b - odp uzasadnij. a b c...
 stokrotka8811  1
 kombinacja liniowa wektorow
Dane są niewspółliniowe punkty A,B,C i dany punkt P, leżący na prostej BC. Zapisać wektor AP\rightarrow jako kombinację liniową wektorów AB\rightarrow i AC\rightarrow[/tex:...
 Delilah  2
 przetrzeń liniowa rozpięta przez wektory i dopełnienie
Mam takie zadanie i nie wiem jak znaleźć tą przestrzeń, bo do tej pory byly to przestrzenie, z ktorych wychodziła macierz kwadratowa W przestrzeni R ^{5} ze standardowym iloczynem skalarnym a)wyznacz przestrzeń liniową L rozpiętą przez wektory x=(1...
 afiw2011  2
 przestrzen liniowa - zadanie 28
Czy zbiór\left\{ \left( x _{1},x _{2},x _{3} \right) \in R ^{3} :x _{1}=0 \right\} jest podprzestrzenią liniową R ^{3} Wiem że muszę sprawdzić, że jak dwa wektory spełniają podany...
 waliant  8
 znaleźć iloczyn wektorowy,skalarny- dana długośc wektorów
1. Znaleźć | \vec{a}\times \vec{b}| , jeżeli | \vec{a}|=5, | \vec{b}|=2, \vec{a} \circ \vec{b}=6 2. Znaleźć \vec{a} \circ \vec{b} jeżeli | \ve...
 graber  2
 Baza złożona z wektorów własnych endomorfizmu
Wykaż, że jeśli \phi : R ^{2} \rightarrow R ^{2} jest endomorfizmem liniowym takim, że dim \phi(R ^{2})=1, to R ^{2} ma bazę złożoną z wektorów własnych...
 saute  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com