szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 10:20 
Użytkownik

Posty: 27
Lokalizacja: Sosnowiec
Witam, postanowiłem trochę zabrać się za naukę a dokładnie macierze jednak w jednym z zadań napotkałem na oporny błąd którego nie umiem wyjaśnić, zanim będę mógł orzec że to błąd w książce wolę spytać specjalistów :)

Zadanie brzmi następująco:
Wyznaczyć macierz dopełnień algebraicznych dla macierzy A, jeżeli

\textbf{A} = \begin{bmatrix} 1&4&0\\5&-1&2\\-9&7&4\end{bmatrix}

Więc liczę to w ten sposób

\textbf{A} = \begin{vmatrix} -1&2\\7&4\end{vmatrix} = -1 \cdot 4 - (2 \cdot 7) = -4 - 14 = -18

Obliczyłem tylko jeden wyznacznik macierzy dopełnień ponieważ już na samym początku nie zgadza mi się odpowiedz, która wygląda następująco

\textbf{A*} = \begin{bmatrix} -10&2&44\\16&-4&-43\\8&-2&-21\end{bmatrix}

Mógłby ktoś wskazać gdzie robię błąd?
Z góry dziękuje.
Eldiane
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 11:02 
Moderator

Posty: 9733
Lokalizacja: Bydgoszcz
Odpowiedź z książki jest błędna, a początek Twoich rachunków jest poprawny.

Q.
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 11:58 
Użytkownik

Posty: 27
Lokalizacja: Sosnowiec
Dziękuje za odpowiedź :) rozwiało to moje wątpliwości

Skoro już rozmawiam o błędach w podręczniku postanowiłem podpiąć pod temat jeszcze jedno zadanie, jakbyś mógł zerknąć na to. Być może, popełniam gdzieś błąd

Zadanie brzmi następująco
Znaleźć macierz odwrotną dla danej macierzy A

\textbf{A} = \begin{bmatrix} 3&-1&2\\-4&1&0\\2&0&-3\end{bmatrix}

Więc rozpoczynam od obliczenia wyznacznika macierzy który wg moich obliczeń wynosi:

\begin{vmatrix} A\end{vmatrix} = -9 + 0 + 0 - (4 + 0 - 12) = -9 + 8 = -1

Następnie obliczam macierz dopełnień algebraicznych (podam od razu wynik, jeśli będzie potrzeba wklejania każdego kroku kolejno to zrobię to)

\textbf{A} = \begin{bmatrix} -3&-3&-2\\-12&-13&-8\\-2&-2&-1\end{bmatrix}

Dokonuje następnie zamiany wierszy z kolumnami

\textbf{A} = \begin{bmatrix} -3&-12&-2\\-3&-13&-2\\-2&-8&-1\end{bmatrix}

I dokonuje podstawienia do wzoru na macierz odwrotną

-1 \cdot \begin{bmatrix} -3&-12&-2\\-3&-13&-2\\-2&-8&-1\end{bmatrix} = \begin{bmatrix} 3&12&2\\3&13&2\\2&8&1\end{bmatrix}

Natomiast w książce jest odpowiedz

\textbf{A} = \begin{bmatrix} 3&3&2\\12&13&8\\2&2&1\end{bmatrix}

Widać że obliczenia są OK, tylko macierz nie jest odwrócona... Może ja posiadam zły wzór czy to może znowu błąd w podręczniku?

Z góry ponownie dziękuje.
Eldiane
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 12:01 
Moderator

Posty: 9733
Lokalizacja: Bydgoszcz
To co nazwałeś macierzą dopełnień algebraicznych jest transponowaną macierzą dopełnień algebraicznych.

Q.
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 12:05 
Użytkownik

Posty: 27
Lokalizacja: Sosnowiec
Faktycznie, ale we wzorze występuje właśnie transponowana macierz dopełnień algebraicznych czyż nie? przynajmniej tak nam podał wykładowca

\frac{1}{det A}  \cdot transponowana macierz dopełnień
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 12:08 
Moderator

Posty: 9733
Lokalizacja: Bydgoszcz
Zgadza się, dlatego właśnie potem tak jak napisałeś należy zamienić kolumny z wierszami, czyli transponować macierz. Ale macierz dopełnień algebraicznych to macierz przed transponowaniem.

Innymi słowy: transponowałeś macierz dopełnień dwukrotnie, otrzymując z powrotem macierz wyjściową, a miałeś transponować ją tylko raz.

Q.
Góra
Mężczyzna Offline
PostNapisane: 29 paź 2011, o 12:10 
Użytkownik

Posty: 27
Lokalizacja: Sosnowiec
Dziękuje za pomoc, teraz już wszystko jasne :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Macierz diagonalna  Kamil Szmit  2
 Macierz odwrotna z parametrami..  BeHappy  8
 Macierz przekształcenia z obrotem  Harry Xin  6
 Macierz odwrotna - zadanie 23  wisoni  2
 Macierz odwzorowania liniowego - zadanie 6  flannery1990  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com