szukanie zaawansowane
 [ Posty: 14 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 10 sty 2012, o 10:04 
Użytkownik

Posty: 2
Lokalizacja: Warszawa
Witam. to mój pierwszy post więc proszę o wyrozumiałość
Mam kilka zadań, w których przydała by mi się pomoc, są z kilku działów ale umieściłem je w jednym poście żeby nie szukać ich po całym forum

Zadanie 1.Iloczyn Kartezjański - proszę o sprawdzenie
Wyznaczyć zbiór G  \cup H, G  \cap  H, G \setminus H, H \setminus G, jeżeli G=A  \times  B i H=C  \times  D oraz

A=\{1,2,3,4\}, B=\{1,2,4,2\}, C=\{1,3,6,1\}, D=\{1,4,6,8\}

G = A  \times  B = \\
=\{(1,1),(1,2),(1,4),(1,2),(2,1),(2,2),(2,4),(2,2),(3,1),(3,2),(3,4),(3,2),(4,1),(4,2),(4,4),(4,2)\}

H = C  \times  D = \\
=\{(1,1),(1,4),(1,6),(1,8),(3,1),(3,4),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8),(1,1),(1,4),(1,6),(1,8)\}

G  \cap  H = \{(1,1),(1,4),(3,1),(3,4)\}

G  \cup  H = \{(1,1),(1,2),(1,4),(1,2),(2,1),(2,2),(2,4),(2,2),(3,1),(3,2),(3,4),(3,2),\\
(4,1),(4,2),(4,4),(4,2),(1,6),(1,8),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8)\}

G \setminus H = \{(1,2),(1,2),(2,1),(2,2),(2,4),(2,2),(3,2),(3,2),(4,1),(4,2),(4,4),(4,2)\}

H \setminus G = \{(1,6),(1,8),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8),(1,6),(1,8)\}

Zadanie 2. Relacje Binarne - prosze o sprawdzenie
W zbiorze X  \times  Y dana jest relacja R. Wyznaczyć wszystkie elementy należące do tej relacji. Sprawdź czy relacja ta jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna, przechodnia. Czy jest relacją równoważności.

X=\{1,2,5\}, Y=\{12,13,14,15\}, R=\{(x,y): x|y\}\\
R=\{(1,12),(1,13),(1,14),(1,15),(2,12),(2,14),(5,15)\}

- relacja nie jest zwrotna;
- relacja jest przeciwzwrotna;
- relacja nie jest symetryczna;
- relacja jest przeciwsymetryczna;
- relacja nie jest przechodnia;
- nie jest relacją równoważności;

Zadanie 3. Grafy - tu prosiłbym o jak najdokładniejszą podpowiedz gdyż nie mam kompletnie pojęcia o tym jak narysować ten graf
Sporządz rysunek grafu skierowanego G, w którym zbiór wierzchołków V(G) = \{ w,x,y,z\}, zbiór krawędzi E(G) = \{a,b,c,d,e,f,g\} , a funkcja \gamma podana jest w tabeli :
\begin{tabular}{c|ccccccc}  e  &  a  &  b  &  c  &  d  &  e  &  f  &  g  \\ \hline  \gamma (e)  &  (x,w)  &  (w,x)  &  (x,x)  &  (w,z)  &  (w,y)  &  (w,z)  &  (z,y)  \\ \hline \end{tabular}

Wskaż w tym grafie cykl. Jaka jest najkrótsza droga z wierzchołka x do y. Jaka jest długość tej drogi. Czy istnieje tylko jedna taka droga? Napisz macierz sąsiedztwa dla tej relacji. Czy para (z,x) jest w relacji osiągalności.

Zadanie 4. Relacje porządkujące - proszę o sprawdzenie
W zbiorze X dana jest relacja R. Zbadać, czy ta relacja jest:
1) relacja porządku,
2) relacją liniowego porządku,
3) relacją dobrego porządku.
W przypadku gdy jest to relacja porządku, wyznaczyć elementy: maksymalny, minimalny, największy, najmniejszy, ograniczenia górne, ograniczenia dolne, kres górny, kres dolny (o ile takie istnieją).

a) X=\{2^{n}: n  \in  \mathbb N\} zaś R=\{(x,y): x|y\}
jest relacją porządku;
jest relacją liniowego porządku;
jest relacją dobrego porządku;
element maksymalny i najwiekszy nie istnieją
elementem minimalnym i najmiejszym jest liczba 2;
Góra
Mężczyzna Offline
PostNapisane: 10 sty 2012, o 10:24 
Użytkownik

Posty: 5541
Lokalizacja: Z Bielskia-Białej
1. Usuń ze zbiorów powtarzające się elementy
2.Dobrze
3. Zapis:e=a \wedge \phi(e)=(x,w) oznacza,że krawędź oznaczysz literką a
jeśli połączysz wierzchołek xz wierzchołkiemw tak,że strzałka pokazująca kierunek pokazuje na w.
Macierz sąsiedztwa mówi,że jeśli (xRy \Leftrightarrow istnieje krawędź łącząca te dwa wierzchołki) zachodzi dajesz 1 jeśli nie 0
Relacja osiągalności xRy \Leftrightarrow istnieje ciąg krawędzi który z x doproadzi na y
Cykl-podgraf realizujący relację osiągalności dla pary (x,x)
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 21:14 
Użytkownik

Posty: 10
Lokalizacja: Warszawa
dlaczego w zadaniu 2. nie jest zwrotna ?
przecież każdy element sam ze sobą jest zwrotny ;/
chyba inaczej się patrzy na zwrotność jeśli elementy pochodzą z dwóch różnych zbiorów?
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:11 
Moderator

Posty: 14564
Lokalizacja: Wrocław
dosiu napisał(a):
chyba inaczej się patrzy na zwrotność jeśli elementy pochodzą z dwóch różnych zbiorów?

Dla mnie rozpatrywanie zwrotności w takim przypadku nie ma sensu, choć na siłę można sobie wyobrazić, jak taka definicja mogłaby wyglądać dla różnych zbiorów. Podobną uwagę mam do innych własności relacji.

JK
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:15 
Użytkownik

Posty: 10
Lokalizacja: Warszawa
tzn że jeśli elementy pochodzą z dwóch różnych zbiorów (np. X=\{1,2,3\}, Y=\{a,b,c\}, R(x,y) \Leftrightarrow  x=y) a pytają mnie czy relacja jest zwrotna to odpowiedzią poprawną jest że nie ?
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:22 
Moderator

Posty: 14564
Lokalizacja: Wrocław
Pytanie jest źle postawione. Po pierwsze nie wiadomo, czym są a,b,c. Po drugie, nie wiem, co miałaby zwrotność oznaczać dla relacji pomiędzy elementami różnych zbiorów. Dla mnie definiowanie tej własności w tej sytuacji nie ma sensu, więc z mojego punktu widzenia pytanie jest źle postawione.

Ale jeżeli pokażesz mi definicję takiej "zwrotności", to Ci odpowiem.

JK
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 23:29 
Użytkownik

Posty: 10
Lokalizacja: Warszawa
no nie znam takowej więc zostawię już ten temat. Rozumiem, że odpowiedzi podane przez Racannon w zadaniu 2 są poprawne ?
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 00:31 
Moderator

Posty: 14564
Lokalizacja: Wrocław
dosiu napisał(a):
Rozumiem, że odpowiedzi podane przez Racannon w zadaniu 2 są poprawne ?

Jan Kraszewski napisał(a):
Po drugie, nie wiem, co miałaby zwrotność oznaczać dla relacji pomiędzy elementami różnych zbiorów. Dla mnie definiowanie tej własności w tej sytuacji nie ma sensu, więc z mojego punktu widzenia pytanie jest źle postawione.

A skąd ja mam wiedzieć, jak nie znam definicji tych własności w tej sytuacji?

JK
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 14:20 
Użytkownik

Posty: 10
Lokalizacja: Warszawa
to uważasz, że w zadaniu 2 zbiory X i Y są podane tylko po to żeby sprawdzić czy rozumiem na czym polega relacja, a cechy relacji już powinienem sprawdzać na całej przestrzeni ?

bo wtedy mi wychodzą odpowiedzi:
- relacja jest zwrotna;
- relacja nie jest przeciwzwrotna;
- relacja nie jest symetryczna;
- relacja jest przeciwsymetryczna;
- relacja jest przechodnia;
- jest relacją równoważności;
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 19:02 
Moderator

Posty: 14564
Lokalizacja: Wrocław
dosiu napisał(a):
to uważasz, że w zadaniu 2 zbiory X i Y są podane tylko po to żeby sprawdzić czy rozumiem na czym polega relacja,

Nic nie uważam. Skoro wg mnie zadanie jest bez sensu, to jak przypuszczać, do czego ma służyć?

dosiu napisał(a):
a cechy relacji już powinienem sprawdzać na całej przestrzeni ?

Na jakiej "całej przestrzeni"?

JK
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 11:13 
Użytkownik

Posty: 5541
Lokalizacja: Z Bielskia-Białej
Relacja to jest podzbiór płaszczyzny kartezjańskiej ,a nasz podzbiór
A \times B \subset \mathbb{N} \times \mathbb{N} to ten wypisany przez koleżankę wówczas w języku nasze własności można zapisać w postaci
ZWROTNOŚĆ
(x,x) \in A \times B
SYMETRIA
(x,y) \in A \times B \Rightarrow (y,x) \in A \times B
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 13:57 
Moderator

Posty: 14564
Lokalizacja: Wrocław
Opisujesz inną sytuację. I zapominasz o kwantyfikatorach.

JK
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 16:23 
Użytkownik

Posty: 5541
Lokalizacja: Z Bielskia-Białej
Ja tak rozumiem to zadanie.
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 18:00 
Moderator

Posty: 14564
Lokalizacja: Wrocław
Każdy może na swój sposób rozumieć to zadanie, co oznacza, że jest to złe zadanie.

JK
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 14 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Iloczyn kartezjański zbiorów.
Mamy zbiór \{\{0,1\}\}^3 i pytanie ile elementów ma ten zbiór? Teraz moje pytanie czy dobrze myślę. Iloczyn ten można zapisać tak \{\{0,1\}\} \times \{\{0,1\}\} \times \{\{0,1\}\}=\{ (\{0,1\}, \{0,1\},...
 Dargi  6
 Iloczyn kartezjański w układzie współrzędnych
Dobrze. Dziękuję bardzo za pomoc ...
 Jonarz  6
 uogólniona suma i iloczyn
Wyznacz uogólnioną sumę i iloczyn At A_t= \left(0, \frac{1}{t} \right), t \in R _{+}...
 damcios  1
 iloczyn kartezjański-sprawdzenie
Czyli teraz jest dobrze? Miki999 dziękuję...
 olenka19  7
 Relacje: zwrotna, symetryczna, przechodnia - zadanie 2
Witam, jutro piszę kolokwium na którym będzie zadanie typu: "Niech relację R zadano w zbiorze wszystkich parzystych liczb całkowitych tak, że xRy oznacza, że |x|>|y|[/te...
 Gdziemojekonie  19
 Podać relację równoważności
Dla zbioru X i jego podziału S podać relację równoważności (w miarę konkretnym wzorem), którego zbiór ilorazowy jest równy temu podziałowi. X = \NN; S=\{P,N\}, g...
 nne  2
 Udowodnić zależność - relacje równoważności
Niech R i S będą relacjami równoważności w zbiorze X. Czy R \cup S i R \cap S są relacjami równoważności? Udowodnić. Znam tylko odpowiedzi, jednak za nic w świecie nie jestem w stanie wyprow...
 OzzyM  1
 relacje, dowód
Udowodnić że jeśli R_1, R_2 są relacjami równoważności na A, to: R_1 \circ R_2 = A^2 \Leftrightarrow R_1 = A^2...
 tukanik  3
 Aplikacja indukcji - iloczyn liczb pierwszych
Witam wszystkich, Może ktoś pomóc przy takim zadanku? Udowodnić indukcyjnie, że każdą liczbę naturalną m \ge 2 można przedstawić w postaci iloczynu liczb pierwszych (iloczyn może składać się z jednego czynni...
 adi_anabel  4
 Iloczyn kartezjański - zadanie 52
Iloczyn kartezjański dwóch zbiorów to zbiór par uporządkowanych?...
 bob1000  1
 Iloczyn kartezjański - zadanie 26
Problem natury... W (R^{2}, de) zrobić AxB, gdzie A = {x \in R^{2}: \left( \frac{1}{3}\right) ^{ \frac{ x^{2}-1 }{2x+6} }<1} B= {x \in R^{2}: \left| \left| x+2\r...
 kserkses1  2
 Warunki konieczne i wystarczające - relacje.
Co rozumiesz przez R^2, bo standardowo R^2=R\times R\neq R o ile R\neq \varnothing...
 MC_720  7
 Metoda założeniowa dowód, relacje
1. Udowowdnij metodą założeniową, że dla dowolnych X ,Y, Z: X \subseteq Y \cup Z \Rightarrow X \setminus Y \subseteq Z Oczywiście wiem, że X \subseteq Y \Leftrightarrow (x \in X \Rightarrow x \in Y&#41...
 tajner  9
 Moc zbiorów + funkcje + relacje
Funkcja g : N \rightarrow Nprzyjmuje wartość g(x)=x+ 1 dla parzystych x, zaś g(x) = x-1 dla nieparzystch [tex:hsoyllh0...
 matinf  16
 Relacje częściowo uporządkowane
Przepisałem dokłądnie treść/ A co do odpowiedzi na moje pytanie ?...
 matinf  3
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com