szukanie zaawansowane
 [ Posty: 14 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 10 sty 2012, o 10:04 
Użytkownik

Posty: 2
Lokalizacja: Warszawa
Witam. to mój pierwszy post więc proszę o wyrozumiałość
Mam kilka zadań, w których przydała by mi się pomoc, są z kilku działów ale umieściłem je w jednym poście żeby nie szukać ich po całym forum

Zadanie 1.Iloczyn Kartezjański - proszę o sprawdzenie
Wyznaczyć zbiór G  \cup H, G  \cap  H, G \setminus H, H \setminus G, jeżeli G=A  \times  B i H=C  \times  D oraz

A=\{1,2,3,4\}, B=\{1,2,4,2\}, C=\{1,3,6,1\}, D=\{1,4,6,8\}

G = A  \times  B = \\
=\{(1,1),(1,2),(1,4),(1,2),(2,1),(2,2),(2,4),(2,2),(3,1),(3,2),(3,4),(3,2),(4,1),(4,2),(4,4),(4,2)\}

H = C  \times  D = \\
=\{(1,1),(1,4),(1,6),(1,8),(3,1),(3,4),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8),(1,1),(1,4),(1,6),(1,8)\}

G  \cap  H = \{(1,1),(1,4),(3,1),(3,4)\}

G  \cup  H = \{(1,1),(1,2),(1,4),(1,2),(2,1),(2,2),(2,4),(2,2),(3,1),(3,2),(3,4),(3,2),\\
(4,1),(4,2),(4,4),(4,2),(1,6),(1,8),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8)\}

G \setminus H = \{(1,2),(1,2),(2,1),(2,2),(2,4),(2,2),(3,2),(3,2),(4,1),(4,2),(4,4),(4,2)\}

H \setminus G = \{(1,6),(1,8),(3,6),(3,8),(6,1),(6,4),(6,6),(6,8),(1,6),(1,8)\}

Zadanie 2. Relacje Binarne - prosze o sprawdzenie
W zbiorze X  \times  Y dana jest relacja R. Wyznaczyć wszystkie elementy należące do tej relacji. Sprawdź czy relacja ta jest zwrotna, przeciwzwrotna, symetryczna, antysymetryczna, przechodnia. Czy jest relacją równoważności.

X=\{1,2,5\}, Y=\{12,13,14,15\}, R=\{(x,y): x|y\}\\
R=\{(1,12),(1,13),(1,14),(1,15),(2,12),(2,14),(5,15)\}

- relacja nie jest zwrotna;
- relacja jest przeciwzwrotna;
- relacja nie jest symetryczna;
- relacja jest przeciwsymetryczna;
- relacja nie jest przechodnia;
- nie jest relacją równoważności;

Zadanie 3. Grafy - tu prosiłbym o jak najdokładniejszą podpowiedz gdyż nie mam kompletnie pojęcia o tym jak narysować ten graf
Sporządz rysunek grafu skierowanego G, w którym zbiór wierzchołków V(G) = \{ w,x,y,z\}, zbiór krawędzi E(G) = \{a,b,c,d,e,f,g\} , a funkcja \gamma podana jest w tabeli :
\begin{tabular}{c|ccccccc}  e  &  a  &  b  &  c  &  d  &  e  &  f  &  g  \\ \hline  \gamma (e)  &  (x,w)  &  (w,x)  &  (x,x)  &  (w,z)  &  (w,y)  &  (w,z)  &  (z,y)  \\ \hline \end{tabular}

Wskaż w tym grafie cykl. Jaka jest najkrótsza droga z wierzchołka x do y. Jaka jest długość tej drogi. Czy istnieje tylko jedna taka droga? Napisz macierz sąsiedztwa dla tej relacji. Czy para (z,x) jest w relacji osiągalności.

Zadanie 4. Relacje porządkujące - proszę o sprawdzenie
W zbiorze X dana jest relacja R. Zbadać, czy ta relacja jest:
1) relacja porządku,
2) relacją liniowego porządku,
3) relacją dobrego porządku.
W przypadku gdy jest to relacja porządku, wyznaczyć elementy: maksymalny, minimalny, największy, najmniejszy, ograniczenia górne, ograniczenia dolne, kres górny, kres dolny (o ile takie istnieją).

a) X=\{2^{n}: n  \in  \mathbb N\} zaś R=\{(x,y): x|y\}
jest relacją porządku;
jest relacją liniowego porządku;
jest relacją dobrego porządku;
element maksymalny i najwiekszy nie istnieją
elementem minimalnym i najmiejszym jest liczba 2;
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 10 sty 2012, o 10:24 
Użytkownik

Posty: 5802
Lokalizacja: Z Bielskia-Białej
1. Usuń ze zbiorów powtarzające się elementy
2.Dobrze
3. Zapis:e=a \wedge \phi(e)=(x,w) oznacza,że krawędź oznaczysz literką a
jeśli połączysz wierzchołek xz wierzchołkiemw tak,że strzałka pokazująca kierunek pokazuje na w.
Macierz sąsiedztwa mówi,że jeśli (xRy \Leftrightarrow istnieje krawędź łącząca te dwa wierzchołki) zachodzi dajesz 1 jeśli nie 0
Relacja osiągalności xRy \Leftrightarrow istnieje ciąg krawędzi który z x doproadzi na y
Cykl-podgraf realizujący relację osiągalności dla pary (x,x)
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 21:14 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
dlaczego w zadaniu 2. nie jest zwrotna ?
przecież każdy element sam ze sobą jest zwrotny ;/
chyba inaczej się patrzy na zwrotność jeśli elementy pochodzą z dwóch różnych zbiorów?
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:11 
Moderator

Posty: 16171
Lokalizacja: Wrocław
dosiu napisał(a):
chyba inaczej się patrzy na zwrotność jeśli elementy pochodzą z dwóch różnych zbiorów?

Dla mnie rozpatrywanie zwrotności w takim przypadku nie ma sensu, choć na siłę można sobie wyobrazić, jak taka definicja mogłaby wyglądać dla różnych zbiorów. Podobną uwagę mam do innych własności relacji.

JK
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:15 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
tzn że jeśli elementy pochodzą z dwóch różnych zbiorów (np. X=\{1,2,3\}, Y=\{a,b,c\}, R(x,y) \Leftrightarrow  x=y) a pytają mnie czy relacja jest zwrotna to odpowiedzią poprawną jest że nie ?
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 22:22 
Moderator

Posty: 16171
Lokalizacja: Wrocław
Pytanie jest źle postawione. Po pierwsze nie wiadomo, czym są a,b,c. Po drugie, nie wiem, co miałaby zwrotność oznaczać dla relacji pomiędzy elementami różnych zbiorów. Dla mnie definiowanie tej własności w tej sytuacji nie ma sensu, więc z mojego punktu widzenia pytanie jest źle postawione.

Ale jeżeli pokażesz mi definicję takiej "zwrotności", to Ci odpowiem.

JK
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2012, o 23:29 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
no nie znam takowej więc zostawię już ten temat. Rozumiem, że odpowiedzi podane przez Racannon w zadaniu 2 są poprawne ?
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 00:31 
Moderator

Posty: 16171
Lokalizacja: Wrocław
dosiu napisał(a):
Rozumiem, że odpowiedzi podane przez Racannon w zadaniu 2 są poprawne ?

Jan Kraszewski napisał(a):
Po drugie, nie wiem, co miałaby zwrotność oznaczać dla relacji pomiędzy elementami różnych zbiorów. Dla mnie definiowanie tej własności w tej sytuacji nie ma sensu, więc z mojego punktu widzenia pytanie jest źle postawione.

A skąd ja mam wiedzieć, jak nie znam definicji tych własności w tej sytuacji?

JK
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 14:20 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
to uważasz, że w zadaniu 2 zbiory X i Y są podane tylko po to żeby sprawdzić czy rozumiem na czym polega relacja, a cechy relacji już powinienem sprawdzać na całej przestrzeni ?

bo wtedy mi wychodzą odpowiedzi:
- relacja jest zwrotna;
- relacja nie jest przeciwzwrotna;
- relacja nie jest symetryczna;
- relacja jest przeciwsymetryczna;
- relacja jest przechodnia;
- jest relacją równoważności;
Góra
Mężczyzna Offline
PostNapisane: 16 sty 2012, o 19:02 
Moderator

Posty: 16171
Lokalizacja: Wrocław
dosiu napisał(a):
to uważasz, że w zadaniu 2 zbiory X i Y są podane tylko po to żeby sprawdzić czy rozumiem na czym polega relacja,

Nic nie uważam. Skoro wg mnie zadanie jest bez sensu, to jak przypuszczać, do czego ma służyć?

dosiu napisał(a):
a cechy relacji już powinienem sprawdzać na całej przestrzeni ?

Na jakiej "całej przestrzeni"?

JK
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 11:13 
Użytkownik

Posty: 5802
Lokalizacja: Z Bielskia-Białej
Relacja to jest podzbiór płaszczyzny kartezjańskiej ,a nasz podzbiór
A \times B \subset \mathbb{N} \times \mathbb{N} to ten wypisany przez koleżankę wówczas w języku nasze własności można zapisać w postaci
ZWROTNOŚĆ
(x,x) \in A \times B
SYMETRIA
(x,y) \in A \times B \Rightarrow (y,x) \in A \times B
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 13:57 
Moderator

Posty: 16171
Lokalizacja: Wrocław
Opisujesz inną sytuację. I zapominasz o kwantyfikatorach.

JK
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 16:23 
Użytkownik

Posty: 5802
Lokalizacja: Z Bielskia-Białej
Ja tak rozumiem to zadanie.
Góra
Mężczyzna Offline
PostNapisane: 17 sty 2012, o 18:00 
Moderator

Posty: 16171
Lokalizacja: Wrocław
Każdy może na swój sposób rozumieć to zadanie, co oznacza, że jest to złe zadanie.

JK
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 14 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 udowodnić relację porządku
W zbiorze X=\{1,2,3,4,5,6,7\} zdefiniowano relację wzorem xRy \Leftrightarrow 2|(x-y) Pokazać że jest to relacja porządku. Żeby była porządku musi być zwrotna, antysymetryczna i przech...
 ssass  1
 relacje - zadanie 6
Cześc. Mam takie zadanko: Zbadaj czy relacja \rho X^{2} jest relacją równoważności. Wyznacz klasy abstrakcji X=N [tex:37fqo5...
 kammi  5
 Iloczyn pustej rodziny zbiorów
Przeglądam teraz jeszcze raz podręcznik ze wstępu do matematyki żeby przyswoić sobie materiał i powtórzyć pojęcia których nie rozumiałem. Mam problem z definicją iloczynu rodziny zbiorów. Przyjmujemy że rodzina zbiorów nie może być zbiorem pustym. Z...
 Matiks21  9
 Relacje + porządki
1) Podać przykład relacji symetrycznej na \mathbb N, która nie jest zwrotna ani przechodnia. Wymyśliłem: (\forall x,y \in \mathbb N)(xRy \leftrightarrow ( m-n \neq 0 ) T...
 porucznik  12
 Suma i iloczyn rodziny zbiorów
Witam! Mam taki problem z zadaniami, mam znaleźć\bigcup_{n=1}^{ \infty } A_n oraz \bigcap_{n=1}^{n} A_n, gdzie ciąg zbiorów \left\langle A_{n}: n \in \NN \setminus \left\{ 0\r...
 Water Melon  56
 Znajdź relację rownoważności mając klasy abstrakcji.
W zbiorze \langle 0,5 ) wprowadź relację równoważności tak, aby klasami abstrakcji były \left\langle 0,2 \right\rangle,\ \left( 2,3 \right),\ \langle 3,5 ) Proszę o pomoc, ...
 chrumek  1
 Relacje i funkcje.
1. Podaj trzy przykłady relacji dwuargumentowych. 2. Podaj trzy przykłady relacji trójargumentowych. 3. Niech R X_{1} ...
 Molas.  0
 Rachunek zbiorów/Iloczyn kartezjański.
Prosiłbym o sprawdzenie tego przykładu. Udowodnij, że: X \setminus (X \setminus A) = A , gdzie X jest uniwersum, natomiast A jest pewnym zbiorem. X \setminus (X \setminus A) \Leftrightarro...
 Czesc  2
 iloczyn kartezjański - zadanie 45
podać ilustrację geometryczną następujących iloczynów kartezjańskich: A \times B, gdzie A= Mógł by mi ktoś krok po kroku wytłumaczyć co...
 blackbird936  1
 Jakie własności posiadają relacje
Witam, mam wątpliwości przy kilku zadaniach związanych z relacjami i jeśli ktoś miałby chwilę czasu i mógłby mi napisać, czy mój tok rozumowania jest słuszny i dlaczego nie jest, byłbym bardzo wdzięczny ...
 hodak  3
 Zbiór przeliczalny i nieprzeliczalny, iloczyn kartezjański
Mam pytanie, wiem, że iloczyn kartezjański zbioru przeliczalnego i nieprzeliczalnego jest zawsze zbiorem nieprzeliczalnym, ale czy jest ktoś w stanie przedstawić mi dowód tego??...
 asia_07_08  4
 Suma i iloczyn zbioru - zadanie 4
@JK Przyznaję że z pięć razy zmieniałem uproszczoną postać tych zbiorów i okazuje się że najzgrabniejsza wg. mnie też jest felerna. Skoro ten zapis \left\{ x \in R : 0 \le x \le 0 \right\} jest poprawny to dlaczego zap...
 witek3  10
 Iloczyn kartezjański - dowodzenie wzorów.
Proszę o wskazówkę jak udowodnić wzory: a) (A \cap B) \times C = (A \times C) \cap (B \times C) b) A \times (B \setminus C) = (A \times B) \setminus (A \times C...
 bajserek1  1
 Znajdź iloczyn i sume uogólnioną
Prosiłabym o wytłumaczenie wytłumaczenie, bo nie mogę sobie z tym poradzić. 1) Znajdź iloczyn i sume uogólnioną: dla t \in T \ \bigcup A_{t} oraz \bigcap A_{t}: a) \ A_{t...
 aqlec  1
 Rodzina zbiorów: suma i iloczyn
Co do iloczynu: jest to 0 , ponieważ tylko 0 zawiera się w każdym ze zbiorów A_{t} , W kwestii formalnej: 1. N...
 jack93  4
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com