szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 19 lut 2007, o 00:52 
Gość Specjalny
Avatar użytkownika

Posty: 2469
Lokalizacja: BW
Kryterium porównawcze zbieżności szeregów


  1. Jeżeli \bigvee_{N>0}\bigwedge_{n>N}|a_{n}|\leqslant b_{n} oraz szereg \sum_{n=1}^{\infty}b_{n} jest zbieżny, to szereg \sum_{n=1}^{\infty}a_{n} jest zbieżny.
  2. Jeżeli \bigvee_{N>0}\bigwedge_{n>N}0\leqslant b_{n}\leqslant a_{n} oraz szereg \sum_{n=1}^{\infty}b_{n} jest rozbieżny, to szereg \sum_{n=1}^{\infty}a_{n} jest rozbieżny.
Dowód:
  1. Ponieważ szereg \sum_{n=1}^{\infty}b_{n} jest zbieżny, więc na podstawie twierdzenia Cauchy'ego możemy napisać

    \bigwedge_{\varepsilon>0}\bigvee_{N_{0}\geqslant N}\bigwedge_{n,m\in\mathbb{N},\,n\geqslant m}\left(n,m>N_{0}\right\Rightarrow \left(b_{m}+b_{m+1}+...b_{n}\right)


    A więc dla n,m>N_{0} i n\geqslant m zachodzi nierówność:

    \left|\sum_{k=m}^{n}a_{k}\right|\leqslant\sum_{k=m}^{k}\left|a_{k}\right|\leqslant\sum_{k=m}^{n}b_{k}

    Co po ponownym skorzystaniu z twierdzenia Cauchy'ego oznacza, że szereg \sum_{n=1}^{\infty}a_{n} jest zbieżny.
  2. Przypuśćmy, że szereg \sum_{n=1}^{\infty}a_{n} jest zbieżny. Wtedy na mocy a) zbieżny jest szereg \sum_{n=1}^{\infty}b_{n}, co powoduje sprzeczność, a ta kończy dowód.

\blacksquare

Góra
Utwórz nowy temat Ten temat jest zamknięty. Nie możesz w nim pisać ani edytować postów.  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Kryterium porównawcze zbieżności szeregów - zadanie 2  mik3  1
 Kryterium porównawcze zbieżności szeregów - zadanie 3  LunaRiddle  1
 Kryterium ilorazowe - zadanie 8  Dasio11  0
 Szeregi. Zbieżność szeregów.  Tomasz Rużycki  0
 Kryterium pierwiastkowe Cauchy'ego  bolo  0
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com