[ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 maja 2012, o 13:44 
Gość Specjalny

Posty: 8534
Lokalizacja: Kraków
Przez ułamki proste (odpowiednio I i II rodzaju) rozumiemy następujące wyrażenia:

\frac{A}{(ax+b)^k}, \quad \frac{Bx+C}{(cx^2 + dx+e)^p}

gdzie x jest zmienną, zaś pozostałe oznaczenia odnoszą się do stałych, przy czym k i p to liczby naturalne. Dodatkowo wyróżnik trójmianu kwadratowego jest ujemny, tzn. d^2 - 4ec <  0 [1].

Umiejętność rozkładania wyrażeń wymiernych na sumę ułamków prostych jest kluczowa w wielu zagadnieniach analizy matematycznej, m.in. przy całkowaniu funkcji wymiernych, badaniu zbieżności szeregów lub obliczania ich sumy czy też przy obliczaniu odwrotnej transformaty Laplace'a.

Ogólny algorytm rozkładania wyrażenia wymiernego na sumę ułamków prostych przedstawimy na następujących przykładzach.





1. Oblicz całkę
I = \int \frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \, \mbox d x


Pierwiastków wielomianu z mianownika szukamy w postaci dzielników wyrazu wolnego, czyli -6. Widzimy, że 1 jest pierwiastkiem, zatem możemy dalej zapisać:

$\begin{align*} x^3 - 6x^2 + 11x - 6 &= (x-1)(x^2 - 5x + 6) = (x-1)(x^2 - 3x - 2x + 6) \\
& = (x-1)(x-2)(x-3) \end{align*} $

Zatem w rozkładzie funkcji podcałkowej na ułamki proste, występować będą tylko ułamki I rodzaju.

\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \equiv \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}

Zakładamy, że (x-1)(x-2)(x-3) \neq 0 i mnożymy przez to wyrażenie obustronnie powyższą tożsamość

6 - 4x \equiv A (x-2)(x-3) + B(x-1)(x-3) + C (x-1)(x-2) \quad (1)

Wymnażamy wyrażenia po prawej i porządkujemy wyrazy

6 - 4x \equiv (A+B+C)x^2 + (-5A -4B - 3C) x + (6A + 3 B + 2 C)

Przyrównując współczynniki przy odpowiednich potęgach zmiennej x po obu stronach tożsamości otrzymamy układ trzech równań liniowych.

\begin{cases} \phantom{-}0 & = A+B+C \\
-4 &= -5A - 4B - 3C \\
\phantom{-}6 &= 6A + 3 B + 2 C\end{cases}

Czytelnik może spróbować rozwiązać ten układ znanymi sobie metodami, jednak do wyznaczenia stałych A, B, C możemy posłużyć się innym rozumowaniem. Otóż podstawmy do równania (1) kolejno x=1, \; x=2, \; x=3, co da nam:

\begin{cases} 2 & = 2A \\ -2 & = -B \\ -6 &= 2C \end{cases}

Zatem:
\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} = \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3}

Rozwiązaniem zadania jest rodzina funkcji:

I = \int \left( \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} \right) \, \mbox d x = \ln |x+1| + 2 \ln |x-2|  - 3 \ln |x-3| +C


2. Oblicz całkę
I  = \int \frac{\mbox d x}{4 + x^4}


Wydawać by się mogło, że funkcja podcałkowa jest już ułamkiem prostym - wielomian z mianownika nie ma pierwiastków rzeczywistych. Tak jednak nie jest. Spoglądając na to jak zostały przez nas zdefiniowane ułamki proste widzimy, że wielomian x^4 + 4 powinien dać się rozłożyć na iloczyn dwóch wielomianów drugiego stopnia. Istotnie, posłużmy się wzorami skróconego mnożenia by zapisać:

x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - 4x^2 = \left[ (x^2 + 2) - 2 x \right] \cdot \left[ (x^2 + 2) + 2 x \right]

Rozkład na ułamki proste będzie miał postać:

\frac{1}{4 + x^4} \equiv \frac{A x + B}{x^2 - 2x + 2} + \frac{C x + D}{x^2 + 2x + 2}

Mnożymy tożsamość obustronnie przez 4+x^4 oraz porządkujemy wyrażenia:

1 \equiv (A + C)x^3 + (2A + B - 2 C + D) x^2 + 2(A + B  + C - D)x + 2(B+D)

jest to równoważne następującemu układowi równań

\begin{cases} A + C & = 0 \\ 2A + B - 2 C + D &= 0 \\ 2(A + B  + C - D) & = 0 \\ 2B + 2D & = 1 \end{cases}

Układ ten można uprościć. Z pierwszego równania wyznaczamy A = - C, z ostatniego zaś B = \tfrac{1}{2} - D. Wstawiamy te zależności do drugiego i trzeciego równania otrzymując

\begin{cases} -2 C + \frac{1}{2} - D - 2C + D & = 0 \\ 2 \left( -C + \frac{1}{2} - D + C - D \right) & = 0  \end{cases}

Od razu możemy odczytać, że C = \frac{1}{8} = - A oraz D = \frac{1}{4} = \frac{1}{2} - B. Pozwala to nam zapisać całkę w następującej postaci:

I = \int \left( \frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} + \frac{ \frac{1}{8} x + \frac{1}{4} }{x^2 + 2x + 2} \right) \, \mbox d x

W tym miejscu zwróćmy uwagę na to, że ułamki proste II rodzaju nie są w ogólności wygodne do całkowania. Jest na to jednak sposób - należy tak przekształcić licznik by znalazła się w nich pochodna trójmianu kwadratowego (z dokładnością do stałej multiplikatywnej) z mianownika plus ,,reszta''. By lepiej zobrazować tę ideę, posłużymy się przykładem.

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2}

Pochodna trójmianu z mianownika to (x^2 - 2x + 2)' = 2x - 2, możemy to dalej przekształcić:

$ \begin{align*} 2x - 2 &= - 16 \left( - \frac{1}{8} x + \frac{1}{8} \right) \\
& = - 16 \left( - \frac{1}{8} x + \frac{1}{4} - \frac{1}{8} \right)\\
& = -16 \left( - \frac{1}{8} x + \frac{1}{4} \right) + 2\end{align*} $

W ten sposób otrzymamy:

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} = \frac{ - \frac{1}{16} \left[ (2x-2) - 2 \right] }{x^2 - 2x + 2} = -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{x^2 - 2x +2}

Dodatkowo trójmian kwadratowy w drugim ułamku zapiszmy w postaci kanonicznej: x^2 - 2x +2 = (x-1)^2 + 1.
Postępując analogicznie z drugim ułamkiem prostym powstałym w wyniku rozkładu funkcji podcałkowej z I otrzymamy:

I = \int \left( -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{(x-1)^2 + 1} + \frac{1}{16} \frac{(x^2 + 2x + 2)'}{x^2 + 2x+ 2} + \frac{1}{8} \frac{1}{(x+1)^2 + 1}  \right) \, \mbox d x

Korzystając z podstawowych wzorów na całkowanie otrzymamy:

I = - \frac{1}{16} \ln | x^2  - 2 x + 2| + \frac{1}{8} \arctan (x-1) + \frac{1}{16} \ln | x^2 + 2x + 2| + \frac{1}{8} \arctan (x+1) + C



3. Oblicz sumy następujących szeregów:

S_1 = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)}, \quad S_2 = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2}


Rozkładu na ułamki proste dokonamy przez przekształcenia elementarne:

$\begin{align*} S_1 & = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)} = \sum_{n = 1}^{+\infty} \frac{n + 1 - n}{n (n+1)} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \\
& = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots = 1
\end{align*}$


$\begin{align*} S_2 & = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2} = \sum_{n = 1}^{+\infty} \frac{(n + 1)^2 - n^2}{n^2 (n+1)^2} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{(n+1)^2}{n^2(n+1)^2} - \frac{n^2}{n^2(n+1)^2} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\
& = \left( 1 - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \ldots = 1
\end{align*}$



4. Oblicz odwrotną transformatę Laplace'a z: [2]

F(s) = \frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s}


Oczywistym pierwiastkiem mianownika jest s=0. Kolejnych pierwiastków szukamy przez sprawdzanie czy któryś z dzielników liczby 3 nie jest pierwiastkiem. Okazuje się, że s=-3 jest pierwiastkiem. Stąd:

s^4 + 4 s^3 + 4 s^2 + 3 s = s(s^3 + 4s^2 + 4s+ 3) = s (s+3)(s^2 + s + 1)

Rozkład na sumę ułamków prostych ma postać:

\frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s} \equiv \frac{A}{s} + \frac{B}{s + 3} + \frac{D s + E}{s^2 + s + 1}

Tożsamość mnożymy obustronnie przez s^4 + 4 s^3 + 4 s^2 + 3 s i porządkujemy wyrazy:

s^3 + 6 s^2 + 15 s + 1 \equiv (A + B + C)s^3 + (4A + B + 3 C +D)s^2 + (4A + B + 3 D) s +  3A

Jest to równoważne następującemu układowi równań:

\begin{cases} A + B + C & = 1 \\ 4A + B + 3 C +D & = 6 \\ 4A + B + 3 D & = 15 \\ 3A & = 1
\end{cases}

Z ostatniego równania mamy od razu A = \tfrac{1}{3}, co w połączeniu z pierwszym daje: B = \tfrac{2}{3} - C. Możemy zatem przepisać drugie i trzecie równanie:

\begin{cases} \frac{4}{3} + \frac{2}{3} - C + 3C + D & = 6 \\
\frac{4}{3} + \frac{2}{3} - C + 3 D & = 15 \end{cases}

Ostatecznie otrzymujemy następujący rozkład na sumę ułamków prostych:

\frac{1}{3} \frac{1}{s} + \frac{17}{21} \frac{1}{s+3} + \frac{1}{7} \frac{30 - s}{s^2 + s + 1}

Transformaty odwrotne dwóch pierwszych ułamków możemy zapisać od razu:

$ \begin{align*} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\}  & = u(t) \\
\mathcal{L}^{-1} \left\{  \frac{1}{s+3} \right\} & = e^{-3t} \cdot u(t) \end{align*}

Przez u oznaczyliśmy funkcję skoku jednostkowego. Ostatni ułamek, jako ułamek prosty, nie jest najbardziej praktycznym wyborem. W tym celu doprowadzimy go do następującej postaci:

\frac{30 - s}{s^2 + s + 1} = \frac{30 - s}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} \equiv A \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + B \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Taka postać ułamków pozwoli od razu zapisać transformatę odwrotną jako funkcje sinus i kosinus przesunięte w dziedzie s. Prosty rachunek daje odpowiedź w postaci:

G(s) = \frac{30 - s}{s^2 + s + 1} = - \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + \frac{61}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Stąd zaś:

\mathcal{L}^{-1} \left\{ G(s) \right\} = - e^{-t/2} \cos \frac{\sqrt{3} t}{2} u(t) + \frac{61}{\sqrt{3}} e^{-t/2} \sin \frac{\sqrt{3} t}{2} u(t)

W celu zakończenia zadania należy połączyć ze sobą wyniki kolejnych etapów rozwiązania.



5. Przykłady z Forum, z rozwiązaniami:



Wszelkie komentarze odnośnie tego postu proszę kierować na Obrazek

Źródła:
1. W. Krysicki, L. Włodarski, ,,Analiza matematyczna w zadaniacz, cz. I'', wydanie XXV
2. Arasis, Odwrotna transformata Laplace'a, 298053.htm
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rozkład LU macierzy- szukanie wyznacznika macierzy
Rozkład LU macierzy- szukanie wyznacznika Rozkład LU macierzy w bardzo łatwy sposób daje nam możliwość policzenia wyznaczni...
 miodzio1988  0
 Rozbicie wielomianów na ułamki proste
Jak rozbić taki wielomian na ułamki proste: a) \frac{3+2s+s^2}{&#40;1+s&#41;^3} b) \frac{12+2s}{5+2s+s^2}...
 winfast29  6
 rozkład zmiennej losowej - zadanie 32
mam problem z następującym zadanie: zmienna losowa ma rozkład jednostajny na przedziale -1,1. Wyznaczyc rozkład zmiennej losowej y=2*X+1. jutro mam kolo więc będę wdzięczna za pomoc...
 aneta180791  1
 Znaleźć rozkład zmiennej losowej - zadanie 6
Cześć! Tak jak w temacie: Niech X \sim \mathcal{U}&#40;0,1&#41;. Znaleźć rozkład zmiennej losowej Y=\ln X. Z góry dziękuję za pomoc....
 leszczu450  15
 Rozkład Gaussa. Student
Czas skupienia uwagi u czteroletnich dzieci ma rozkład Gaussa, którego średnia wynosi 12 mminut, a standardowe odchylenie jest równe 3-em minutom. Wyznaczyć: 1. Najdłuższy czas skupienia uwagii dzieci, które należądo najwyższej, 85% frakcji. 2. Fr...
 kmv  0
 rozkład wielomianu - zadanie 7
Niech Q&#40;a&#41; będzie ciałem rozkładu wielomianu f:=T^3+2T^2-3T-1 \in Q. Załóżmy, że w Q&#40;a&#41; zachodzi f=&#40;T-a&#41;&#40;T-b&#41;&#40;...
 Hania_87  1
 Rozkład wielomianów - zadanie 5
Rozłóż na czynniki wielomiany: x^{4}+64...
 zyga37  1
 Wielowymiarowy rozkład normalny
Proszę o rozwiązanie takiego zadania. Wektor losowy &#40;X,Y&#41; ma rozkład o gęstości: g&#40;x,y&#41;=\frac{1}{\sqrt{2}\pi}exp&#40;-\frac{x^{2}-2xy+3y^{2}}{2}&#41; Znajdź macierz kowarianc...
 acmilan  5
 Rozkład funkcji gęstości prawdopodobieństwa
Zapisać wzór funkcji gęstości (4 przypadki), a następnie przypomnieć sobie wzory na wartość oczekiwaną, wariancję i odchylenie standardowe dla zmiennych losowych ciągłych....
 nieumiemtego  7
 2 przykłady z granic ciagu
Mam takie zadanie \lim_{ n\to \infty } \frac{1}{ 2^{n}+5 } = 0 \lim_{ n\to \infty } \frac{1000}{ n! } = 0 Mam problem z tym jak się do nich zabrać czy może mnie ktoś nakierować jak do tych przykładów podejść?...
 qubikk0  4
 podobno proste rzeczy: -"szereg przedziałowy"
Witam .Krótko i do rzeczy. Jestem do tyłu z koła ze statystyki bo za chiny ludowe nie mogłem obliczyś średniej ,dominanty ,modany ,odchylenia standardowego i bocznego dla szeregu przedziałowego. Dla prostego rozumiem wzory ale dla przedziałowego ni h...
 Maxav  0
 Rozłóż podaną funkcję na ułamki proste nad R
\frac{-4x}{ - x^{2} +x+2 } proszę o pomoc. wiem, że łatwe ale jakoś mam problem z tym mianownikiem....
 pozorqa  3
 wielomian w pierścieniu, rozkład na czynniki
Mam takie zadanko: Niech będzie dany wielomian \ w&#40;x&#41;=x^{3} + 2x^{2} + 7x + 6 w pierścieniu Z_{8}. Znaleźć wszystkie rozkłady wielomianu w(x) na czynniki nierozkładalne oraz wyzna...
 kasiulcia7  1
 proste dzialanie
Hej, potrzebuje pomocy w prostym dzialaniu, jednak im dalej w nie brnę tym jest gorzej ; // Może wy mi pomożecie??? To bardzo pilne \frac{-3 &#40;2x - 5&#41;}{2} + 5 &lt; 4 &#40;x - 1&#41; - 3x + 8 w wyniku p...
 donia2580  6
 proste pytanie, odnośnie całki
Cześć, Właśnie się uczę metody całkowania przez części... Mam go obliczonego ale nie kumam jednej rzeczy... przykład: \int e^{x} sinxdx = Nie rozumiem dlaczego akurat w tym przykładzie trzeba 2krotknie dodawać t...
 gecior  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com