szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 maja 2012, o 13:44 
Gość Specjalny

Posty: 8562
Lokalizacja: Kraków
Przez ułamki proste (odpowiednio I i II rodzaju) rozumiemy następujące wyrażenia:

\frac{A}{(ax+b)^k}, \quad \frac{Bx+C}{(cx^2 + dx+e)^p}

gdzie x jest zmienną, zaś pozostałe oznaczenia odnoszą się do stałych, przy czym k i p to liczby naturalne. Dodatkowo wyróżnik trójmianu kwadratowego jest ujemny, tzn. d^2 - 4ec <  0 [1].

Umiejętność rozkładania wyrażeń wymiernych na sumę ułamków prostych jest kluczowa w wielu zagadnieniach analizy matematycznej, m.in. przy całkowaniu funkcji wymiernych, badaniu zbieżności szeregów lub obliczania ich sumy czy też przy obliczaniu odwrotnej transformaty Laplace'a.

Ogólny algorytm rozkładania wyrażenia wymiernego na sumę ułamków prostych przedstawimy na następujących przykładzach.





1. Oblicz całkę
I = \int \frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \, \mbox d x


Pierwiastków wielomianu z mianownika szukamy w postaci dzielników wyrazu wolnego, czyli -6. Widzimy, że 1 jest pierwiastkiem, zatem możemy dalej zapisać:

$\begin{align*} x^3 - 6x^2 + 11x - 6 &= (x-1)(x^2 - 5x + 6) = (x-1)(x^2 - 3x - 2x + 6) \\
& = (x-1)(x-2)(x-3) \end{align*} $

Zatem w rozkładzie funkcji podcałkowej na ułamki proste, występować będą tylko ułamki I rodzaju.

\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \equiv \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}

Zakładamy, że (x-1)(x-2)(x-3) \neq 0 i mnożymy przez to wyrażenie obustronnie powyższą tożsamość

6 - 4x \equiv A (x-2)(x-3) + B(x-1)(x-3) + C (x-1)(x-2) \quad (1)

Wymnażamy wyrażenia po prawej i porządkujemy wyrazy

6 - 4x \equiv (A+B+C)x^2 + (-5A -4B - 3C) x + (6A + 3 B + 2 C)

Przyrównując współczynniki przy odpowiednich potęgach zmiennej x po obu stronach tożsamości otrzymamy układ trzech równań liniowych.

\begin{cases} \phantom{-}0 & = A+B+C \\
-4 &= -5A - 4B - 3C \\
\phantom{-}6 &= 6A + 3 B + 2 C\end{cases}

Czytelnik może spróbować rozwiązać ten układ znanymi sobie metodami, jednak do wyznaczenia stałych A, B, C możemy posłużyć się innym rozumowaniem. Otóż podstawmy do równania (1) kolejno x=1, \; x=2, \; x=3, co da nam:

\begin{cases} 2 & = 2A \\ -2 & = -B \\ -6 &= 2C \end{cases}

Zatem:
\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} = \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3}

Rozwiązaniem zadania jest rodzina funkcji:

I = \int \left( \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} \right) \, \mbox d x = \ln |x+1| + 2 \ln |x-2|  - 3 \ln |x-3| +C


2. Oblicz całkę
I  = \int \frac{\mbox d x}{4 + x^4}


Wydawać by się mogło, że funkcja podcałkowa jest już ułamkiem prostym - wielomian z mianownika nie ma pierwiastków rzeczywistych. Tak jednak nie jest. Spoglądając na to jak zostały przez nas zdefiniowane ułamki proste widzimy, że wielomian x^4 + 4 powinien dać się rozłożyć na iloczyn dwóch wielomianów drugiego stopnia. Istotnie, posłużmy się wzorami skróconego mnożenia by zapisać:

x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - 4x^2 = \left[ (x^2 + 2) - 2 x \right] \cdot \left[ (x^2 + 2) + 2 x \right]

Rozkład na ułamki proste będzie miał postać:

\frac{1}{4 + x^4} \equiv \frac{A x + B}{x^2 - 2x + 2} + \frac{C x + D}{x^2 + 2x + 2}

Mnożymy tożsamość obustronnie przez 4+x^4 oraz porządkujemy wyrażenia:

1 \equiv (A + C)x^3 + (2A + B - 2 C + D) x^2 + 2(A + B  + C - D)x + 2(B+D)

jest to równoważne następującemu układowi równań

\begin{cases} A + C & = 0 \\ 2A + B - 2 C + D &= 0 \\ 2(A + B  + C - D) & = 0 \\ 2B + 2D & = 1 \end{cases}

Układ ten można uprościć. Z pierwszego równania wyznaczamy A = - C, z ostatniego zaś B = \tfrac{1}{2} - D. Wstawiamy te zależności do drugiego i trzeciego równania otrzymując

\begin{cases} -2 C + \frac{1}{2} - D - 2C + D & = 0 \\ 2 \left( -C + \frac{1}{2} - D + C - D \right) & = 0  \end{cases}

Od razu możemy odczytać, że C = \frac{1}{8} = - A oraz D = \frac{1}{4} = \frac{1}{2} - B. Pozwala to nam zapisać całkę w następującej postaci:

I = \int \left( \frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} + \frac{ \frac{1}{8} x + \frac{1}{4} }{x^2 + 2x + 2} \right) \, \mbox d x

W tym miejscu zwróćmy uwagę na to, że ułamki proste II rodzaju nie są w ogólności wygodne do całkowania. Jest na to jednak sposób - należy tak przekształcić licznik by znalazła się w nich pochodna trójmianu kwadratowego (z dokładnością do stałej multiplikatywnej) z mianownika plus ,,reszta''. By lepiej zobrazować tę ideę, posłużymy się przykładem.

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2}

Pochodna trójmianu z mianownika to (x^2 - 2x + 2)' = 2x - 2, możemy to dalej przekształcić:

$ \begin{align*} 2x - 2 &= - 16 \left( - \frac{1}{8} x + \frac{1}{8} \right) \\
& = - 16 \left( - \frac{1}{8} x + \frac{1}{4} - \frac{1}{8} \right)\\
& = -16 \left( - \frac{1}{8} x + \frac{1}{4} \right) + 2\end{align*} $

W ten sposób otrzymamy:

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} = \frac{ - \frac{1}{16} \left[ (2x-2) - 2 \right] }{x^2 - 2x + 2} = -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{x^2 - 2x +2}

Dodatkowo trójmian kwadratowy w drugim ułamku zapiszmy w postaci kanonicznej: x^2 - 2x +2 = (x-1)^2 + 1.
Postępując analogicznie z drugim ułamkiem prostym powstałym w wyniku rozkładu funkcji podcałkowej z I otrzymamy:

I = \int \left( -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{(x-1)^2 + 1} + \frac{1}{16} \frac{(x^2 + 2x + 2)'}{x^2 + 2x+ 2} + \frac{1}{8} \frac{1}{(x+1)^2 + 1}  \right) \, \mbox d x

Korzystając z podstawowych wzorów na całkowanie otrzymamy:

I = - \frac{1}{16} \ln | x^2  - 2 x + 2| + \frac{1}{8} \arctan (x-1) + \frac{1}{16} \ln | x^2 + 2x + 2| + \frac{1}{8} \arctan (x+1) + C



3. Oblicz sumy następujących szeregów:

S_1 = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)}, \quad S_2 = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2}


Rozkładu na ułamki proste dokonamy przez przekształcenia elementarne:

$\begin{align*} S_1 & = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)} = \sum_{n = 1}^{+\infty} \frac{n + 1 - n}{n (n+1)} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \\
& = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots = 1
\end{align*}$


$\begin{align*} S_2 & = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2} = \sum_{n = 1}^{+\infty} \frac{(n + 1)^2 - n^2}{n^2 (n+1)^2} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{(n+1)^2}{n^2(n+1)^2} - \frac{n^2}{n^2(n+1)^2} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\
& = \left( 1 - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \ldots = 1
\end{align*}$



4. Oblicz odwrotną transformatę Laplace'a z: [2]

F(s) = \frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s}


Oczywistym pierwiastkiem mianownika jest s=0. Kolejnych pierwiastków szukamy przez sprawdzanie czy któryś z dzielników liczby 3 nie jest pierwiastkiem. Okazuje się, że s=-3 jest pierwiastkiem. Stąd:

s^4 + 4 s^3 + 4 s^2 + 3 s = s(s^3 + 4s^2 + 4s+ 3) = s (s+3)(s^2 + s + 1)

Rozkład na sumę ułamków prostych ma postać:

\frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s} \equiv \frac{A}{s} + \frac{B}{s + 3} + \frac{D s + E}{s^2 + s + 1}

Tożsamość mnożymy obustronnie przez s^4 + 4 s^3 + 4 s^2 + 3 s i porządkujemy wyrazy:

s^3 + 6 s^2 + 15 s + 1 \equiv (A + B + C)s^3 + (4A + B + 3 C +D)s^2 + (4A + B + 3 D) s +  3A

Jest to równoważne następującemu układowi równań:

\begin{cases} A + B + C & = 1 \\ 4A + B + 3 C +D & = 6 \\ 4A + B + 3 D & = 15 \\ 3A & = 1
\end{cases}

Z ostatniego równania mamy od razu A = \tfrac{1}{3}, co w połączeniu z pierwszym daje: B = \tfrac{2}{3} - C. Możemy zatem przepisać drugie i trzecie równanie:

\begin{cases} \frac{4}{3} + \frac{2}{3} - C + 3C + D & = 6 \\
\frac{4}{3} + \frac{2}{3} - C + 3 D & = 15 \end{cases}

Ostatecznie otrzymujemy następujący rozkład na sumę ułamków prostych:

\frac{1}{3} \frac{1}{s} + \frac{17}{21} \frac{1}{s+3} + \frac{1}{7} \frac{30 - s}{s^2 + s + 1}

Transformaty odwrotne dwóch pierwszych ułamków możemy zapisać od razu:

$ \begin{align*} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\}  & = u(t) \\
\mathcal{L}^{-1} \left\{  \frac{1}{s+3} \right\} & = e^{-3t} \cdot u(t) \end{align*}

Przez u oznaczyliśmy funkcję skoku jednostkowego. Ostatni ułamek, jako ułamek prosty, nie jest najbardziej praktycznym wyborem. W tym celu doprowadzimy go do następującej postaci:

\frac{30 - s}{s^2 + s + 1} = \frac{30 - s}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} \equiv A \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + B \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Taka postać ułamków pozwoli od razu zapisać transformatę odwrotną jako funkcje sinus i kosinus przesunięte w dziedzie s. Prosty rachunek daje odpowiedź w postaci:

G(s) = \frac{30 - s}{s^2 + s + 1} = - \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + \frac{61}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Stąd zaś:

\mathcal{L}^{-1} \left\{ G(s) \right\} = - e^{-t/2} \cos \frac{\sqrt{3} t}{2} u(t) + \frac{61}{\sqrt{3}} e^{-t/2} \sin \frac{\sqrt{3} t}{2} u(t)

W celu zakończenia zadania należy połączyć ze sobą wyniki kolejnych etapów rozwiązania.



5. Przykłady z Forum, z rozwiązaniami:



Wszelkie komentarze odnośnie tego postu proszę kierować na Obrazek

Źródła:
1. W. Krysicki, L. Włodarski, ,,Analiza matematyczna w zadaniacz, cz. I'', wydanie XXV
2. Arasis, Odwrotna transformata Laplace'a, 298053.htm
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rozkład LU macierzy- szukanie wyznacznika macierzy
Rozkład LU macierzy- szukanie wyznacznika Rozkład LU macierzy w bardzo łatwy sposób daje nam możliwość policzenia wyznaczni...
 miodzio1988  0
 Rozłożyć na ułamki proste - zadanie 4
Rozłożyć na ułamki proste w R funkcje wymierne Mam z tym mały problem, przez który nie jestem w stanie dokończyć zadania ;/ Posłużę się przykładem \frac{x^2 +3}{&#40;x^2-x+1&#41;^2}= \frac{Ax+B}{&#40;x^2-x...
 stopek3  1
 proste + punkty
ile prostych mozna poprowadzić przez n punktów n\ge-- 9 marca 2009, 19:02 --zamiast podgląd wcisnełam wyslij oto cała treść: ile prostych mozna poprowadzić przez n punktów n\ge[/tex:...
 milalp  3
 Proste równanie - zadanie 3
\sqrt{&#40;9-12x+4x^{2}&#41;}=2\\ 3-\sqrt{12x}+2x=2\\ \sqrt{12x}+2x=-1 Nie mam pomysłu na wyznaczenie x, będę wdzięczny za wskazówki....
 Wave  6
 Rozkład zmiennej losowej - zadanie 15
Koleżanka poprosiła mnie o pomoc w rozwiązaniu kilku zadań ze statystyki, z 17 sobie poradziłem ale zostały jeszcze trzy (i sądzę, że też będą proste ale zapomniałem już kilku pojęć): 1) 20 pracowników pewnego supersamu zapytano czy lubią nowego kier...
 izual83  0
 Rozkład normalny [Zadanie]
Przyjmijmy że wyniki testu IQ przeprowadzonego w grupie 500 osób mają rozkład normalny ze średnią arytmetyczna = 100 i odchyleniem standardowym = 15.Oszacuj ile osób z tej grupy uzyskało wynik testu: a)między 85 a 115 b)większy od 115 c)większy od 13...
 Caspy  3
 proste równanie zespolone brak pomysłu
\left&#40; z-i\right&#41; ^{3} = \overline z +i proszę nawet nie tyle o rozwiązanie tylko co zrobić tzn próbuje obie strony wziąć w wartość bezwzględną ale ale mam plusy które mi mieszają...
 Biedek91  7
 Rozkład normalny - zadanie 30
Załóżmy że X _{1} ,...,X _{n} i Y _{1} ,...,Y _{n} są niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym N([tex:rd0harn4...
 AdamSpawam  1
 Rozkład Poissona - zadanie 34
Zadanie jest następujące: Pokazać, że rozkład Poissona P = \sum_{k=1}^{ \infty } { \frac{{e^{-n}} \cdot n^{k}}{k!}} jest unormowany do jedności, policzyć wartość oczekiwaną oraz wyliczyć wariancję i odchylenie standard...
 sirduke  3
 Proste równanie - zadanie 11
Nie mówię, że lepszy czy gorszy, tylko szkoda sobie życie utrudniać, nieprawdaż?...
 rafaluk  5
 rozkład normalny - zadanie 7
prosze o pomoc!!!!!! już taka późna godzina a ja dalej nad tym siedzie:( 1) Wytrzymałość lin stalowych,pochodzącycg z masowej konstrukcji jest zmienną X o rozkładzie N(100,5).Oblicz ile przeciętnie lin sposród 1000 ma wytrzymałość mniejszą niż 90 or...
 Asia1986  0
 Łączny rozkład zmiennych
Zmienne (X,Y) mają łączny rozkład zadany przez P&#40;X&gt;x,Y&gt;y&#41;=exp&#40;-x-y-max&#40;x,y&#41;&#41; dla x \ge 0, y \ge 0. Policz P&#40;1&lt;X ...
 900217  6
 Zadanie raczej nie związane z funkcjami, ale proste ;-)
Powierzchnia stołu jest równa 1,2 m2. Ile to cm2? Jezioro Erie ma powierzchnię 25700 km2, Wyraź powierzchnię jeziora w m2 stosując zapis w notacji wykładniczej Belgia ma powierzchnię 30509 km2. Ile to hektarów? Powierzchnia użytkowa gosp. rolnego ...
 GoOd_OmEn  1
 Znaleźć rozkład liczby uzyskanych sukcesów (Poisson)
Liczba X przeprowadzonych doświadczeń jest losowa i może zmieniać się od 0 do \infty, przy czym prawdopodobieństwo że będzie równe k w...
 kieubass  1
 Rozkład wielomianu na czynniki - zadanie 33
Coś z wielomianów Zapisz wyrażenie w prostrzej postaci (krok po kroku rozpisane żeby było, bo najprostrzą postać w odpowiedziach już mam ...
 Kwasek92pl  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com