szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 maja 2012, o 13:44 
Gość Specjalny

Posty: 8571
Lokalizacja: Kraków
Przez ułamki proste (odpowiednio I i II rodzaju) rozumiemy następujące wyrażenia:

\frac{A}{(ax+b)^k}, \quad \frac{Bx+C}{(cx^2 + dx+e)^p}

gdzie x jest zmienną, zaś pozostałe oznaczenia odnoszą się do stałych, przy czym k i p to liczby naturalne. Dodatkowo wyróżnik trójmianu kwadratowego jest ujemny, tzn. d^2 - 4ec <  0 [1].

Umiejętność rozkładania wyrażeń wymiernych na sumę ułamków prostych jest kluczowa w wielu zagadnieniach analizy matematycznej, m.in. przy całkowaniu funkcji wymiernych, badaniu zbieżności szeregów lub obliczania ich sumy czy też przy obliczaniu odwrotnej transformaty Laplace'a.

Ogólny algorytm rozkładania wyrażenia wymiernego na sumę ułamków prostych przedstawimy na następujących przykładzach.





1. Oblicz całkę
I = \int \frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \, \mbox d x


Pierwiastków wielomianu z mianownika szukamy w postaci dzielników wyrazu wolnego, czyli -6. Widzimy, że 1 jest pierwiastkiem, zatem możemy dalej zapisać:

$\begin{align*} x^3 - 6x^2 + 11x - 6 &= (x-1)(x^2 - 5x + 6) = (x-1)(x^2 - 3x - 2x + 6) \\
& = (x-1)(x-2)(x-3) \end{align*} $

Zatem w rozkładzie funkcji podcałkowej na ułamki proste, występować będą tylko ułamki I rodzaju.

\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \equiv \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}

Zakładamy, że (x-1)(x-2)(x-3) \neq 0 i mnożymy przez to wyrażenie obustronnie powyższą tożsamość

6 - 4x \equiv A (x-2)(x-3) + B(x-1)(x-3) + C (x-1)(x-2) \quad (1)

Wymnażamy wyrażenia po prawej i porządkujemy wyrazy

6 - 4x \equiv (A+B+C)x^2 + (-5A -4B - 3C) x + (6A + 3 B + 2 C)

Przyrównując współczynniki przy odpowiednich potęgach zmiennej x po obu stronach tożsamości otrzymamy układ trzech równań liniowych.

\begin{cases} \phantom{-}0 & = A+B+C \\
-4 &= -5A - 4B - 3C \\
\phantom{-}6 &= 6A + 3 B + 2 C\end{cases}

Czytelnik może spróbować rozwiązać ten układ znanymi sobie metodami, jednak do wyznaczenia stałych A, B, C możemy posłużyć się innym rozumowaniem. Otóż podstawmy do równania (1) kolejno x=1, \; x=2, \; x=3, co da nam:

\begin{cases} 2 & = 2A \\ -2 & = -B \\ -6 &= 2C \end{cases}

Zatem:
\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} = \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3}

Rozwiązaniem zadania jest rodzina funkcji:

I = \int \left( \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} \right) \, \mbox d x = \ln |x+1| + 2 \ln |x-2|  - 3 \ln |x-3| +C


2. Oblicz całkę
I  = \int \frac{\mbox d x}{4 + x^4}


Wydawać by się mogło, że funkcja podcałkowa jest już ułamkiem prostym - wielomian z mianownika nie ma pierwiastków rzeczywistych. Tak jednak nie jest. Spoglądając na to jak zostały przez nas zdefiniowane ułamki proste widzimy, że wielomian x^4 + 4 powinien dać się rozłożyć na iloczyn dwóch wielomianów drugiego stopnia. Istotnie, posłużmy się wzorami skróconego mnożenia by zapisać:

x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - 4x^2 = \left[ (x^2 + 2) - 2 x \right] \cdot \left[ (x^2 + 2) + 2 x \right]

Rozkład na ułamki proste będzie miał postać:

\frac{1}{4 + x^4} \equiv \frac{A x + B}{x^2 - 2x + 2} + \frac{C x + D}{x^2 + 2x + 2}

Mnożymy tożsamość obustronnie przez 4+x^4 oraz porządkujemy wyrażenia:

1 \equiv (A + C)x^3 + (2A + B - 2 C + D) x^2 + 2(A + B  + C - D)x + 2(B+D)

jest to równoważne następującemu układowi równań

\begin{cases} A + C & = 0 \\ 2A + B - 2 C + D &= 0 \\ 2(A + B  + C - D) & = 0 \\ 2B + 2D & = 1 \end{cases}

Układ ten można uprościć. Z pierwszego równania wyznaczamy A = - C, z ostatniego zaś B = \tfrac{1}{2} - D. Wstawiamy te zależności do drugiego i trzeciego równania otrzymując

\begin{cases} -2 C + \frac{1}{2} - D - 2C + D & = 0 \\ 2 \left( -C + \frac{1}{2} - D + C - D \right) & = 0  \end{cases}

Od razu możemy odczytać, że C = \frac{1}{8} = - A oraz D = \frac{1}{4} = \frac{1}{2} - B. Pozwala to nam zapisać całkę w następującej postaci:

I = \int \left( \frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} + \frac{ \frac{1}{8} x + \frac{1}{4} }{x^2 + 2x + 2} \right) \, \mbox d x

W tym miejscu zwróćmy uwagę na to, że ułamki proste II rodzaju nie są w ogólności wygodne do całkowania. Jest na to jednak sposób - należy tak przekształcić licznik by znalazła się w nich pochodna trójmianu kwadratowego (z dokładnością do stałej multiplikatywnej) z mianownika plus ,,reszta''. By lepiej zobrazować tę ideę, posłużymy się przykładem.

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2}

Pochodna trójmianu z mianownika to (x^2 - 2x + 2)' = 2x - 2, możemy to dalej przekształcić:

$ \begin{align*} 2x - 2 &= - 16 \left( - \frac{1}{8} x + \frac{1}{8} \right) \\
& = - 16 \left( - \frac{1}{8} x + \frac{1}{4} - \frac{1}{8} \right)\\
& = -16 \left( - \frac{1}{8} x + \frac{1}{4} \right) + 2\end{align*} $

W ten sposób otrzymamy:

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} = \frac{ - \frac{1}{16} \left[ (2x-2) - 2 \right] }{x^2 - 2x + 2} = -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{x^2 - 2x +2}

Dodatkowo trójmian kwadratowy w drugim ułamku zapiszmy w postaci kanonicznej: x^2 - 2x +2 = (x-1)^2 + 1.
Postępując analogicznie z drugim ułamkiem prostym powstałym w wyniku rozkładu funkcji podcałkowej z I otrzymamy:

I = \int \left( -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{(x-1)^2 + 1} + \frac{1}{16} \frac{(x^2 + 2x + 2)'}{x^2 + 2x+ 2} + \frac{1}{8} \frac{1}{(x+1)^2 + 1}  \right) \, \mbox d x

Korzystając z podstawowych wzorów na całkowanie otrzymamy:

I = - \frac{1}{16} \ln | x^2  - 2 x + 2| + \frac{1}{8} \arctan (x-1) + \frac{1}{16} \ln | x^2 + 2x + 2| + \frac{1}{8} \arctan (x+1) + C



3. Oblicz sumy następujących szeregów:

S_1 = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)}, \quad S_2 = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2}


Rozkładu na ułamki proste dokonamy przez przekształcenia elementarne:

$\begin{align*} S_1 & = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)} = \sum_{n = 1}^{+\infty} \frac{n + 1 - n}{n (n+1)} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \\
& = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots = 1
\end{align*}$


$\begin{align*} S_2 & = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2} = \sum_{n = 1}^{+\infty} \frac{(n + 1)^2 - n^2}{n^2 (n+1)^2} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{(n+1)^2}{n^2(n+1)^2} - \frac{n^2}{n^2(n+1)^2} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\
& = \left( 1 - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \ldots = 1
\end{align*}$



4. Oblicz odwrotną transformatę Laplace'a z: [2]

F(s) = \frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s}


Oczywistym pierwiastkiem mianownika jest s=0. Kolejnych pierwiastków szukamy przez sprawdzanie czy któryś z dzielników liczby 3 nie jest pierwiastkiem. Okazuje się, że s=-3 jest pierwiastkiem. Stąd:

s^4 + 4 s^3 + 4 s^2 + 3 s = s(s^3 + 4s^2 + 4s+ 3) = s (s+3)(s^2 + s + 1)

Rozkład na sumę ułamków prostych ma postać:

\frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s} \equiv \frac{A}{s} + \frac{B}{s + 3} + \frac{D s + E}{s^2 + s + 1}

Tożsamość mnożymy obustronnie przez s^4 + 4 s^3 + 4 s^2 + 3 s i porządkujemy wyrazy:

s^3 + 6 s^2 + 15 s + 1 \equiv (A + B + C)s^3 + (4A + B + 3 C +D)s^2 + (4A + B + 3 D) s +  3A

Jest to równoważne następującemu układowi równań:

\begin{cases} A + B + C & = 1 \\ 4A + B + 3 C +D & = 6 \\ 4A + B + 3 D & = 15 \\ 3A & = 1
\end{cases}

Z ostatniego równania mamy od razu A = \tfrac{1}{3}, co w połączeniu z pierwszym daje: B = \tfrac{2}{3} - C. Możemy zatem przepisać drugie i trzecie równanie:

\begin{cases} \frac{4}{3} + \frac{2}{3} - C + 3C + D & = 6 \\
\frac{4}{3} + \frac{2}{3} - C + 3 D & = 15 \end{cases}

Ostatecznie otrzymujemy następujący rozkład na sumę ułamków prostych:

\frac{1}{3} \frac{1}{s} + \frac{17}{21} \frac{1}{s+3} + \frac{1}{7} \frac{30 - s}{s^2 + s + 1}

Transformaty odwrotne dwóch pierwszych ułamków możemy zapisać od razu:

$ \begin{align*} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\}  & = u(t) \\
\mathcal{L}^{-1} \left\{  \frac{1}{s+3} \right\} & = e^{-3t} \cdot u(t) \end{align*}

Przez u oznaczyliśmy funkcję skoku jednostkowego. Ostatni ułamek, jako ułamek prosty, nie jest najbardziej praktycznym wyborem. W tym celu doprowadzimy go do następującej postaci:

\frac{30 - s}{s^2 + s + 1} = \frac{30 - s}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} \equiv A \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + B \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Taka postać ułamków pozwoli od razu zapisać transformatę odwrotną jako funkcje sinus i kosinus przesunięte w dziedzie s. Prosty rachunek daje odpowiedź w postaci:

G(s) = \frac{30 - s}{s^2 + s + 1} = - \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + \frac{61}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Stąd zaś:

\mathcal{L}^{-1} \left\{ G(s) \right\} = - e^{-t/2} \cos \frac{\sqrt{3} t}{2} u(t) + \frac{61}{\sqrt{3}} e^{-t/2} \sin \frac{\sqrt{3} t}{2} u(t)

W celu zakończenia zadania należy połączyć ze sobą wyniki kolejnych etapów rozwiązania.



5. Przykłady z Forum, z rozwiązaniami:



Wszelkie komentarze odnośnie tego postu proszę kierować na Obrazek

Źródła:
1. W. Krysicki, L. Włodarski, ,,Analiza matematyczna w zadaniacz, cz. I'', wydanie XXV
2. Arasis, Odwrotna transformata Laplace'a, 298053.htm
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rozkład LU macierzy- szukanie wyznacznika macierzy
Rozkład LU macierzy- szukanie wyznacznika Rozkład LU macierzy w bardzo łatwy sposób daje nam możliwość policzenia wyznaczni...
 miodzio1988  0
 Rozkład Bernoulliego - zadanie 15
Cześć. Mam do Was pytanie, czy mój tok rozumowania jest prawidłowy Treść zadania: Wadliwość procesu produkcyjnego wynosi 10%. Obliczyć prawdopodobieństwo, że na...
 Kuset  2
 przykłady bez ideałów podmodułów maksymalnych
1. Jaki jest przykład pierścienie który nie zawiera ideałów maksymalnych( wiem że musi być bez 1). 2. Jaki jest przykład modułu który nie ma podmodułów maksymalnych....
 wiosna  2
 Proste pytanie o wzór
Zwracam się do Państwa z prostym pytaniem: jaki jest wzór (i ewentualnie jego nazwa) na obliczenie prawdopodobieństwa wystąpienia jakiegoś zdarzenia przy x% szans i y ilości prób? Przykładowo jeżeli istnieje 15% ryzyko zakażenia się HIV podczas stosu...
 X100  5
 co to jest makro i mikrofraktal?podac przykłady
Przykro mi, że Ci nie pomogłem bardziej, ale liczenie wymiarów tych obiektów to nie jest prosta sprawa i wymaga trochę znajomości teorii wymiaru Hausdorffa. Wszystko jest bardzo ładnie opisane w powyższych książkach....
 elewinka001  5
 Rozkład LU
Za pomocą rozkładu LU można rozwiązac układ równań liniowych obliczyc wartośc wyznacznika macierzy bądż odwrócic macierz Najprostszą metodą oblicznia rozkładu LU=PA jest skorzystanie ze wzoru na iloczyn macierzy Następnie trzeba ułożyc n trójk...
 mariuszm  3
 Trudne przykłady
Witam mam problem z 2 przykładami z zadania. Oto one: \frac{&#40;k-l&#41; ^{2} }{ k^{2}- l^{2} } Wliczniku odlixczam ze wzoru skróconego mnożenia oraz w mianowniku i wychodzi mi:\frac{k^{2} -2kl+l^{2} }{&#4...
 grzech144  1
 rozkład jednostajny - zadanie 7
X_{1} , X_{2} mają rozkład jednostajny na odcinku .Znaleźć rozkład zmiennej losowej X_{1} + X_{2} zakładając,że X_{1} i [tex:2x...
 marciniak  0
 Wskaż ułamki proste
Wskaż ułamki proste : a) \frac{1}{2x-1} b) \frac{1}{&#40;x-1&#41;^2-1} c) \frac{2x+1}{4x^2-4x+1} d) \frac{1}{x^3+x^2+x+1} e) [tex:3...
 Tomy666  2
 proste równanie logarytniczne .
log_{2}&#40;log_{2}^2x&#41;=2 log_{2}^2x=4 log_{2}x=2 lub log_{2}x=-2 x=4 lub x=\frac{1}...
 fanch  8
 Rozkład na ułamki proste z pierwiastkiem w mianowniku
Jak rozłożyć coś takiego na ułamki proste? Jak dobrać współczynniki? \frac{1}{x \sqrt{2-x^2} }...
 maniek115  1
 Rozkład Bernoulliego - rzut kostkami
Mam do rozwiązania następujące zadanie: Rzucamy dwiema kostkami do gry. Sukcesem jest wyrzucenie pary szóstek. Obliczyć prawdopodobieństwo, że w 10 rzutach liczba sukcesów będzie dodatnia, ale nie przekroczy 3. Zrob...
 Arxas  2
 Dwuwymiarowy rozkład normalny. - zadanie 2
Gęstość 2 wymiarowego rozkładu normalnego wyraża się funkcją: f&#40;x,y&#41;=1/pi \cdot exp {-1/2&#40;x^2+2xy+5 y^2&#41;} Zapisać gęstość rozkładu brzegowego f1(x) i określić jego parametry. Metodą prób i błędów doszła...
 be-girl222  0
 Rozkład na czynniki - zadanie 54
&quot;Każdy wielomian o współczynnikach rzeczywistych można rozłożyć na czynniki co najwyżej stopnia drugiego o wspłóczynikach rzeczywistych.&quot; Więc jakkolwiek powinno się dać.... W odpowiedziach jest: &#40;x^2-\sqrt{2}x-2&#41;&#4...
 Leithain  4
 Ułamki masowe
Dana jest gazowa, równomolowa mieszanina H _{2}O i CO. W mieszaninie tej przebiega reakcja H _{2} O + CO = H _{2} + CO _{2} . Obliczyć ułamki masowe wszystkich re...
 pat231  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com