szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 maja 2012, o 12:44 
Gość Specjalny

Posty: 8542
Lokalizacja: Kraków
Przez ułamki proste (odpowiednio I i II rodzaju) rozumiemy następujące wyrażenia:

\frac{A}{(ax+b)^k}, \quad \frac{Bx+C}{(cx^2 + dx+e)^p}

gdzie x jest zmienną, zaś pozostałe oznaczenia odnoszą się do stałych, przy czym k i p to liczby naturalne. Dodatkowo wyróżnik trójmianu kwadratowego jest ujemny, tzn. d^2 - 4ec <  0 [1].

Umiejętność rozkładania wyrażeń wymiernych na sumę ułamków prostych jest kluczowa w wielu zagadnieniach analizy matematycznej, m.in. przy całkowaniu funkcji wymiernych, badaniu zbieżności szeregów lub obliczania ich sumy czy też przy obliczaniu odwrotnej transformaty Laplace'a.

Ogólny algorytm rozkładania wyrażenia wymiernego na sumę ułamków prostych przedstawimy na następujących przykładzach.





1. Oblicz całkę
I = \int \frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \, \mbox d x


Pierwiastków wielomianu z mianownika szukamy w postaci dzielników wyrazu wolnego, czyli -6. Widzimy, że 1 jest pierwiastkiem, zatem możemy dalej zapisać:

$\begin{align*} x^3 - 6x^2 + 11x - 6 &= (x-1)(x^2 - 5x + 6) = (x-1)(x^2 - 3x - 2x + 6) \\
& = (x-1)(x-2)(x-3) \end{align*} $

Zatem w rozkładzie funkcji podcałkowej na ułamki proste, występować będą tylko ułamki I rodzaju.

\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \equiv \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}

Zakładamy, że (x-1)(x-2)(x-3) \neq 0 i mnożymy przez to wyrażenie obustronnie powyższą tożsamość

6 - 4x \equiv A (x-2)(x-3) + B(x-1)(x-3) + C (x-1)(x-2) \quad (1)

Wymnażamy wyrażenia po prawej i porządkujemy wyrazy

6 - 4x \equiv (A+B+C)x^2 + (-5A -4B - 3C) x + (6A + 3 B + 2 C)

Przyrównując współczynniki przy odpowiednich potęgach zmiennej x po obu stronach tożsamości otrzymamy układ trzech równań liniowych.

\begin{cases} \phantom{-}0 & = A+B+C \\
-4 &= -5A - 4B - 3C \\
\phantom{-}6 &= 6A + 3 B + 2 C\end{cases}

Czytelnik może spróbować rozwiązać ten układ znanymi sobie metodami, jednak do wyznaczenia stałych A, B, C możemy posłużyć się innym rozumowaniem. Otóż podstawmy do równania (1) kolejno x=1, \; x=2, \; x=3, co da nam:

\begin{cases} 2 & = 2A \\ -2 & = -B \\ -6 &= 2C \end{cases}

Zatem:
\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} = \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3}

Rozwiązaniem zadania jest rodzina funkcji:

I = \int \left( \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} \right) \, \mbox d x = \ln |x+1| + 2 \ln |x-2|  - 3 \ln |x-3| +C


2. Oblicz całkę
I  = \int \frac{\mbox d x}{4 + x^4}


Wydawać by się mogło, że funkcja podcałkowa jest już ułamkiem prostym - wielomian z mianownika nie ma pierwiastków rzeczywistych. Tak jednak nie jest. Spoglądając na to jak zostały przez nas zdefiniowane ułamki proste widzimy, że wielomian x^4 + 4 powinien dać się rozłożyć na iloczyn dwóch wielomianów drugiego stopnia. Istotnie, posłużmy się wzorami skróconego mnożenia by zapisać:

x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - 4x^2 = \left[ (x^2 + 2) - 2 x \right] \cdot \left[ (x^2 + 2) + 2 x \right]

Rozkład na ułamki proste będzie miał postać:

\frac{1}{4 + x^4} \equiv \frac{A x + B}{x^2 - 2x + 2} + \frac{C x + D}{x^2 + 2x + 2}

Mnożymy tożsamość obustronnie przez 4+x^4 oraz porządkujemy wyrażenia:

1 \equiv (A + C)x^3 + (2A + B - 2 C + D) x^2 + 2(A + B  + C - D)x + 2(B+D)

jest to równoważne następującemu układowi równań

\begin{cases} A + C & = 0 \\ 2A + B - 2 C + D &= 0 \\ 2(A + B  + C - D) & = 0 \\ 2B + 2D & = 1 \end{cases}

Układ ten można uprościć. Z pierwszego równania wyznaczamy A = - C, z ostatniego zaś B = \tfrac{1}{2} - D. Wstawiamy te zależności do drugiego i trzeciego równania otrzymując

\begin{cases} -2 C + \frac{1}{2} - D - 2C + D & = 0 \\ 2 \left( -C + \frac{1}{2} - D + C - D \right) & = 0  \end{cases}

Od razu możemy odczytać, że C = \frac{1}{8} = - A oraz D = \frac{1}{4} = \frac{1}{2} - B. Pozwala to nam zapisać całkę w następującej postaci:

I = \int \left( \frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} + \frac{ \frac{1}{8} x + \frac{1}{4} }{x^2 + 2x + 2} \right) \, \mbox d x

W tym miejscu zwróćmy uwagę na to, że ułamki proste II rodzaju nie są w ogólności wygodne do całkowania. Jest na to jednak sposób - należy tak przekształcić licznik by znalazła się w nich pochodna trójmianu kwadratowego (z dokładnością do stałej multiplikatywnej) z mianownika plus ,,reszta''. By lepiej zobrazować tę ideę, posłużymy się przykładem.

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2}

Pochodna trójmianu z mianownika to (x^2 - 2x + 2)' = 2x - 2, możemy to dalej przekształcić:

$ \begin{align*} 2x - 2 &= - 16 \left( - \frac{1}{8} x + \frac{1}{8} \right) \\
& = - 16 \left( - \frac{1}{8} x + \frac{1}{4} - \frac{1}{8} \right)\\
& = -16 \left( - \frac{1}{8} x + \frac{1}{4} \right) + 2\end{align*} $

W ten sposób otrzymamy:

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} = \frac{ - \frac{1}{16} \left[ (2x-2) - 2 \right] }{x^2 - 2x + 2} = -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{x^2 - 2x +2}

Dodatkowo trójmian kwadratowy w drugim ułamku zapiszmy w postaci kanonicznej: x^2 - 2x +2 = (x-1)^2 + 1.
Postępując analogicznie z drugim ułamkiem prostym powstałym w wyniku rozkładu funkcji podcałkowej z I otrzymamy:

I = \int \left( -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{(x-1)^2 + 1} + \frac{1}{16} \frac{(x^2 + 2x + 2)'}{x^2 + 2x+ 2} + \frac{1}{8} \frac{1}{(x+1)^2 + 1}  \right) \, \mbox d x

Korzystając z podstawowych wzorów na całkowanie otrzymamy:

I = - \frac{1}{16} \ln | x^2  - 2 x + 2| + \frac{1}{8} \arctan (x-1) + \frac{1}{16} \ln | x^2 + 2x + 2| + \frac{1}{8} \arctan (x+1) + C



3. Oblicz sumy następujących szeregów:

S_1 = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)}, \quad S_2 = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2}


Rozkładu na ułamki proste dokonamy przez przekształcenia elementarne:

$\begin{align*} S_1 & = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)} = \sum_{n = 1}^{+\infty} \frac{n + 1 - n}{n (n+1)} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \\
& = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots = 1
\end{align*}$


$\begin{align*} S_2 & = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2} = \sum_{n = 1}^{+\infty} \frac{(n + 1)^2 - n^2}{n^2 (n+1)^2} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{(n+1)^2}{n^2(n+1)^2} - \frac{n^2}{n^2(n+1)^2} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\
& = \left( 1 - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \ldots = 1
\end{align*}$



4. Oblicz odwrotną transformatę Laplace'a z: [2]

F(s) = \frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s}


Oczywistym pierwiastkiem mianownika jest s=0. Kolejnych pierwiastków szukamy przez sprawdzanie czy któryś z dzielników liczby 3 nie jest pierwiastkiem. Okazuje się, że s=-3 jest pierwiastkiem. Stąd:

s^4 + 4 s^3 + 4 s^2 + 3 s = s(s^3 + 4s^2 + 4s+ 3) = s (s+3)(s^2 + s + 1)

Rozkład na sumę ułamków prostych ma postać:

\frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s} \equiv \frac{A}{s} + \frac{B}{s + 3} + \frac{D s + E}{s^2 + s + 1}

Tożsamość mnożymy obustronnie przez s^4 + 4 s^3 + 4 s^2 + 3 s i porządkujemy wyrazy:

s^3 + 6 s^2 + 15 s + 1 \equiv (A + B + C)s^3 + (4A + B + 3 C +D)s^2 + (4A + B + 3 D) s +  3A

Jest to równoważne następującemu układowi równań:

\begin{cases} A + B + C & = 1 \\ 4A + B + 3 C +D & = 6 \\ 4A + B + 3 D & = 15 \\ 3A & = 1
\end{cases}

Z ostatniego równania mamy od razu A = \tfrac{1}{3}, co w połączeniu z pierwszym daje: B = \tfrac{2}{3} - C. Możemy zatem przepisać drugie i trzecie równanie:

\begin{cases} \frac{4}{3} + \frac{2}{3} - C + 3C + D & = 6 \\
\frac{4}{3} + \frac{2}{3} - C + 3 D & = 15 \end{cases}

Ostatecznie otrzymujemy następujący rozkład na sumę ułamków prostych:

\frac{1}{3} \frac{1}{s} + \frac{17}{21} \frac{1}{s+3} + \frac{1}{7} \frac{30 - s}{s^2 + s + 1}

Transformaty odwrotne dwóch pierwszych ułamków możemy zapisać od razu:

$ \begin{align*} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\}  & = u(t) \\
\mathcal{L}^{-1} \left\{  \frac{1}{s+3} \right\} & = e^{-3t} \cdot u(t) \end{align*}

Przez u oznaczyliśmy funkcję skoku jednostkowego. Ostatni ułamek, jako ułamek prosty, nie jest najbardziej praktycznym wyborem. W tym celu doprowadzimy go do następującej postaci:

\frac{30 - s}{s^2 + s + 1} = \frac{30 - s}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} \equiv A \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + B \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Taka postać ułamków pozwoli od razu zapisać transformatę odwrotną jako funkcje sinus i kosinus przesunięte w dziedzie s. Prosty rachunek daje odpowiedź w postaci:

G(s) = \frac{30 - s}{s^2 + s + 1} = - \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + \frac{61}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Stąd zaś:

\mathcal{L}^{-1} \left\{ G(s) \right\} = - e^{-t/2} \cos \frac{\sqrt{3} t}{2} u(t) + \frac{61}{\sqrt{3}} e^{-t/2} \sin \frac{\sqrt{3} t}{2} u(t)

W celu zakończenia zadania należy połączyć ze sobą wyniki kolejnych etapów rozwiązania.



5. Przykłady z Forum, z rozwiązaniami:



Wszelkie komentarze odnośnie tego postu proszę kierować na Obrazek

Źródła:
1. W. Krysicki, L. Włodarski, ,,Analiza matematyczna w zadaniacz, cz. I'', wydanie XXV
2. Arasis, Odwrotna transformata Laplace'a, 298053.htm
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rozkład LU macierzy- szukanie wyznacznika macierzy
Rozkład LU macierzy- szukanie wyznacznika Rozkład LU macierzy w bardzo łatwy sposób daje nam możliwość policzenia wyznaczni...
 miodzio1988  0
 Wyznaczyć rozkład zmiennej losowej. - zadanie 2
Proszę o pomoc w zadaniu z zmiennych losowych. Rzucamy kostką. Zdarzeniu &quot;wypadło k oczek&quot; przypisujemy liczbę 3^k. Wyznaczyć rozkład powstałej w ten sposób zmiennej losowej. Dziękuje ...
 kasssienkaxd  1
 Proste pytanie - zadanie 6
moc omegi nie jest tu istotna, ale skoro potrzebujecie...
 LastSeeds  3
 cztery przykłady
wiedząc, że sinx+cosx= \frac{1}{ \sqrt{2} } oblicz a) sinx * cosx b) |sinx-cosx| c) sin^3x+cos^3x d) sin^4x+cos^4x...
 witek010  1
 Rozkład jednostajny - zadanie 16
Mam pytanie. Jeżeli zmienna losowa ma rozkład jednostajny na przedziale np. ,to czy ta zmienna może być stale równa zero ?...
 studenttt91  2
 Rozkład zmiennej losowej - zadanie 52
Witam! Proszę o przeanalizowanie, czy wszystko jest ok, bo robię następujące zadanie bardziej &quot;na czuja&quot;. Zadanie: Zmienna X ma rozkład jednostajny na przedziale . Znaleźć roz...
 kryger_rio  1
 ROzkład warunkowy
Zmienna losowa Y ma rozkład Poissona P(3). Rozkład warunkowy zmiennej losowej X pod warunkiem Y jest dwumianowy b(Y; p). Znaleźć rozkład zmiennej X oraz obliczyć warunkową wartość oczekiwaną E(X^{2}+ Y^{2}-XY |Y-X)...
 lukabesoin  0
 niestandardowy rozkład
W rozkładzie Q=N&#40;2,3^{2}&#41; znaleźć -prawdopodobieństwa przedziałów &#40;-\infty,2&#41; , &#40;-1,5&#41; - takie wartości a i b dla których Q&#40;-\infty,a&#41;=0,30, Q&#40...
 Plebansk8  1
 Rozkład naprężeń na podstawie warunku równowagi sił
Witam, z początku zaznaczę, że nie wiem czy znalazłem się w odpowiednim dziale - za co z góry przepraszam. Mam do rozwiązania równanie(jak niżej) i znam wartości k i fi(które są liczbami bez żadnych jednostek). Poszukuję oczywiście kąta alfa. W jaki...
 odnaliab  0
 kombinatoryka[gotowe], rozkład zmiennej losowej[2-do zrobie]
witam, mam dwa zadania które sprawaiją mi problem, Zadanie 1. Z zestawu 12 kart: czterech asów, czterech waletów i czterech dam ustalasz sobie trzy karty (nie usuwając ich z zestawu), a następnie będziesz losował jedną kartę. Z tym losowaniem zwiąż...
 szczypek90  3
 Działania na liczbach ! - 2 Przykłady
Ehh mam problem z zadaniem... otóż poszedłem do technikum a tam na lekcji niczego nie powtórzyliśmy sobie tylko od razu nauczycielka nam dała takie przykłady trudniejsze. Za bardzo nie pamiętam jak się je robiło więc proszę o wyrozumiałość... Daję tu...
 Rolexxx  2
 Dwuwymiarowa zmienna losowa, proste regresji
Dwuwymiarowa zmienna losowa ma rozkład równomierny na obszarze: D=\left\{&#40;x,y&#41;:0 \le x \le 1, 0 \le y \le 1-x \right\}. Wyznacz proste regresji II rodzaju....
 abigail  0
 Powierzchnia zawierająca dwie proste.
Nie widzę powodu, dla którego miałoby tak być. Co rozumiesz przez gładką powierzchnię? Gładkość jest bardzo ogólnym pojęciem - wykres funkcji klasy C^\infty? wykres funkcji klasy C^1 czy coś j...
 Ketaiwk  5
 Rozkład wielomianu - zadanie 12
Proszę o rozwiązanie równania Jaka jest liczba rozwiązań równania\frac{x ^{4} -8}{2}=0 oraz x ^{3} -12x=12x ^{2}-x x ^{3} -6x ^{2}+8x=0...
 Ralf92  7
 trojkat i 3 proste rownolegle
Witam uprzejmie tworze tego posta, poniewaz mam problem z 1 zadaniem, a jest ono dla mnie dosc wazne (zeby je zrobic) Brzmi tak: Przez punkt R polozony wewnatrz trojkata ABC poprowadzono 3 proste rownolegle do bokow trojkata. Otrzymano w ten sposob 3...
 WacekFromTHC  4
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com