szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 maja 2012, o 12:44 
Gość Specjalny

Posty: 8555
Lokalizacja: Kraków
Przez ułamki proste (odpowiednio I i II rodzaju) rozumiemy następujące wyrażenia:

\frac{A}{(ax+b)^k}, \quad \frac{Bx+C}{(cx^2 + dx+e)^p}

gdzie x jest zmienną, zaś pozostałe oznaczenia odnoszą się do stałych, przy czym k i p to liczby naturalne. Dodatkowo wyróżnik trójmianu kwadratowego jest ujemny, tzn. d^2 - 4ec <  0 [1].

Umiejętność rozkładania wyrażeń wymiernych na sumę ułamków prostych jest kluczowa w wielu zagadnieniach analizy matematycznej, m.in. przy całkowaniu funkcji wymiernych, badaniu zbieżności szeregów lub obliczania ich sumy czy też przy obliczaniu odwrotnej transformaty Laplace'a.

Ogólny algorytm rozkładania wyrażenia wymiernego na sumę ułamków prostych przedstawimy na następujących przykładzach.





1. Oblicz całkę
I = \int \frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \, \mbox d x


Pierwiastków wielomianu z mianownika szukamy w postaci dzielników wyrazu wolnego, czyli -6. Widzimy, że 1 jest pierwiastkiem, zatem możemy dalej zapisać:

$\begin{align*} x^3 - 6x^2 + 11x - 6 &= (x-1)(x^2 - 5x + 6) = (x-1)(x^2 - 3x - 2x + 6) \\
& = (x-1)(x-2)(x-3) \end{align*} $

Zatem w rozkładzie funkcji podcałkowej na ułamki proste, występować będą tylko ułamki I rodzaju.

\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} \equiv \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}

Zakładamy, że (x-1)(x-2)(x-3) \neq 0 i mnożymy przez to wyrażenie obustronnie powyższą tożsamość

6 - 4x \equiv A (x-2)(x-3) + B(x-1)(x-3) + C (x-1)(x-2) \quad (1)

Wymnażamy wyrażenia po prawej i porządkujemy wyrazy

6 - 4x \equiv (A+B+C)x^2 + (-5A -4B - 3C) x + (6A + 3 B + 2 C)

Przyrównując współczynniki przy odpowiednich potęgach zmiennej x po obu stronach tożsamości otrzymamy układ trzech równań liniowych.

\begin{cases} \phantom{-}0 & = A+B+C \\
-4 &= -5A - 4B - 3C \\
\phantom{-}6 &= 6A + 3 B + 2 C\end{cases}

Czytelnik może spróbować rozwiązać ten układ znanymi sobie metodami, jednak do wyznaczenia stałych A, B, C możemy posłużyć się innym rozumowaniem. Otóż podstawmy do równania (1) kolejno x=1, \; x=2, \; x=3, co da nam:

\begin{cases} 2 & = 2A \\ -2 & = -B \\ -6 &= 2C \end{cases}

Zatem:
\frac{6 - 4x}{x^3 - 6x^2 + 11 x - 6} = \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3}

Rozwiązaniem zadania jest rodzina funkcji:

I = \int \left( \frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} \right) \, \mbox d x = \ln |x+1| + 2 \ln |x-2|  - 3 \ln |x-3| +C


2. Oblicz całkę
I  = \int \frac{\mbox d x}{4 + x^4}


Wydawać by się mogło, że funkcja podcałkowa jest już ułamkiem prostym - wielomian z mianownika nie ma pierwiastków rzeczywistych. Tak jednak nie jest. Spoglądając na to jak zostały przez nas zdefiniowane ułamki proste widzimy, że wielomian x^4 + 4 powinien dać się rozłożyć na iloczyn dwóch wielomianów drugiego stopnia. Istotnie, posłużmy się wzorami skróconego mnożenia by zapisać:

x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - 4x^2 = \left[ (x^2 + 2) - 2 x \right] \cdot \left[ (x^2 + 2) + 2 x \right]

Rozkład na ułamki proste będzie miał postać:

\frac{1}{4 + x^4} \equiv \frac{A x + B}{x^2 - 2x + 2} + \frac{C x + D}{x^2 + 2x + 2}

Mnożymy tożsamość obustronnie przez 4+x^4 oraz porządkujemy wyrażenia:

1 \equiv (A + C)x^3 + (2A + B - 2 C + D) x^2 + 2(A + B  + C - D)x + 2(B+D)

jest to równoważne następującemu układowi równań

\begin{cases} A + C & = 0 \\ 2A + B - 2 C + D &= 0 \\ 2(A + B  + C - D) & = 0 \\ 2B + 2D & = 1 \end{cases}

Układ ten można uprościć. Z pierwszego równania wyznaczamy A = - C, z ostatniego zaś B = \tfrac{1}{2} - D. Wstawiamy te zależności do drugiego i trzeciego równania otrzymując

\begin{cases} -2 C + \frac{1}{2} - D - 2C + D & = 0 \\ 2 \left( -C + \frac{1}{2} - D + C - D \right) & = 0  \end{cases}

Od razu możemy odczytać, że C = \frac{1}{8} = - A oraz D = \frac{1}{4} = \frac{1}{2} - B. Pozwala to nam zapisać całkę w następującej postaci:

I = \int \left( \frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} + \frac{ \frac{1}{8} x + \frac{1}{4} }{x^2 + 2x + 2} \right) \, \mbox d x

W tym miejscu zwróćmy uwagę na to, że ułamki proste II rodzaju nie są w ogólności wygodne do całkowania. Jest na to jednak sposób - należy tak przekształcić licznik by znalazła się w nich pochodna trójmianu kwadratowego (z dokładnością do stałej multiplikatywnej) z mianownika plus ,,reszta''. By lepiej zobrazować tę ideę, posłużymy się przykładem.

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2}

Pochodna trójmianu z mianownika to (x^2 - 2x + 2)' = 2x - 2, możemy to dalej przekształcić:

$ \begin{align*} 2x - 2 &= - 16 \left( - \frac{1}{8} x + \frac{1}{8} \right) \\
& = - 16 \left( - \frac{1}{8} x + \frac{1}{4} - \frac{1}{8} \right)\\
& = -16 \left( - \frac{1}{8} x + \frac{1}{4} \right) + 2\end{align*} $

W ten sposób otrzymamy:

\frac{ -\frac{1}{8} x + \frac{1}{4} }{x^2 - 2x + 2} = \frac{ - \frac{1}{16} \left[ (2x-2) - 2 \right] }{x^2 - 2x + 2} = -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{x^2 - 2x +2}

Dodatkowo trójmian kwadratowy w drugim ułamku zapiszmy w postaci kanonicznej: x^2 - 2x +2 = (x-1)^2 + 1.
Postępując analogicznie z drugim ułamkiem prostym powstałym w wyniku rozkładu funkcji podcałkowej z I otrzymamy:

I = \int \left( -\frac{1}{16} \frac{(x^2 - 2x + 2)'}{x^2 - 2x+ 2} + \frac{1}{8} \frac{1}{(x-1)^2 + 1} + \frac{1}{16} \frac{(x^2 + 2x + 2)'}{x^2 + 2x+ 2} + \frac{1}{8} \frac{1}{(x+1)^2 + 1}  \right) \, \mbox d x

Korzystając z podstawowych wzorów na całkowanie otrzymamy:

I = - \frac{1}{16} \ln | x^2  - 2 x + 2| + \frac{1}{8} \arctan (x-1) + \frac{1}{16} \ln | x^2 + 2x + 2| + \frac{1}{8} \arctan (x+1) + C



3. Oblicz sumy następujących szeregów:

S_1 = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)}, \quad S_2 = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2}


Rozkładu na ułamki proste dokonamy przez przekształcenia elementarne:

$\begin{align*} S_1 & = \sum_{n = 1}^{+\infty} \frac{1}{n (n+1)} = \sum_{n = 1}^{+\infty} \frac{n + 1 - n}{n (n+1)} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \\
& = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots = 1
\end{align*}$


$\begin{align*} S_2 & = \sum_{n = 1}^{+\infty} \frac{2n + 1}{n^2 (n+1)^2} = \sum_{n = 1}^{+\infty} \frac{(n + 1)^2 - n^2}{n^2 (n+1)^2} \\
& = \sum_{n = 1}^{+\infty} \left( \frac{(n+1)^2}{n^2(n+1)^2} - \frac{n^2}{n^2(n+1)^2} \right) = \sum_{n = 1}^{+\infty} \left( \frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\
& = \left( 1 - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \ldots = 1
\end{align*}$



4. Oblicz odwrotną transformatę Laplace'a z: [2]

F(s) = \frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s}


Oczywistym pierwiastkiem mianownika jest s=0. Kolejnych pierwiastków szukamy przez sprawdzanie czy któryś z dzielników liczby 3 nie jest pierwiastkiem. Okazuje się, że s=-3 jest pierwiastkiem. Stąd:

s^4 + 4 s^3 + 4 s^2 + 3 s = s(s^3 + 4s^2 + 4s+ 3) = s (s+3)(s^2 + s + 1)

Rozkład na sumę ułamków prostych ma postać:

\frac{s^3 + 6 s^2 + 15 s + 1}{s^4 + 4 s^3 + 4 s^2 + 3 s} \equiv \frac{A}{s} + \frac{B}{s + 3} + \frac{D s + E}{s^2 + s + 1}

Tożsamość mnożymy obustronnie przez s^4 + 4 s^3 + 4 s^2 + 3 s i porządkujemy wyrazy:

s^3 + 6 s^2 + 15 s + 1 \equiv (A + B + C)s^3 + (4A + B + 3 C +D)s^2 + (4A + B + 3 D) s +  3A

Jest to równoważne następującemu układowi równań:

\begin{cases} A + B + C & = 1 \\ 4A + B + 3 C +D & = 6 \\ 4A + B + 3 D & = 15 \\ 3A & = 1
\end{cases}

Z ostatniego równania mamy od razu A = \tfrac{1}{3}, co w połączeniu z pierwszym daje: B = \tfrac{2}{3} - C. Możemy zatem przepisać drugie i trzecie równanie:

\begin{cases} \frac{4}{3} + \frac{2}{3} - C + 3C + D & = 6 \\
\frac{4}{3} + \frac{2}{3} - C + 3 D & = 15 \end{cases}

Ostatecznie otrzymujemy następujący rozkład na sumę ułamków prostych:

\frac{1}{3} \frac{1}{s} + \frac{17}{21} \frac{1}{s+3} + \frac{1}{7} \frac{30 - s}{s^2 + s + 1}

Transformaty odwrotne dwóch pierwszych ułamków możemy zapisać od razu:

$ \begin{align*} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\}  & = u(t) \\
\mathcal{L}^{-1} \left\{  \frac{1}{s+3} \right\} & = e^{-3t} \cdot u(t) \end{align*}

Przez u oznaczyliśmy funkcję skoku jednostkowego. Ostatni ułamek, jako ułamek prosty, nie jest najbardziej praktycznym wyborem. W tym celu doprowadzimy go do następującej postaci:

\frac{30 - s}{s^2 + s + 1} = \frac{30 - s}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} \equiv A \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + B \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Taka postać ułamków pozwoli od razu zapisać transformatę odwrotną jako funkcje sinus i kosinus przesunięte w dziedzie s. Prosty rachunek daje odpowiedź w postaci:

G(s) = \frac{30 - s}{s^2 + s + 1} = - \frac{s + \frac{1}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2} + \frac{61}{\sqrt{3}} \frac{ \frac{\sqrt{3}}{2}}{ \left( s + \frac{1}{2} \right) ^2 + \left( \frac{\sqrt{3}}{2} \right) ^2}

Stąd zaś:

\mathcal{L}^{-1} \left\{ G(s) \right\} = - e^{-t/2} \cos \frac{\sqrt{3} t}{2} u(t) + \frac{61}{\sqrt{3}} e^{-t/2} \sin \frac{\sqrt{3} t}{2} u(t)

W celu zakończenia zadania należy połączyć ze sobą wyniki kolejnych etapów rozwiązania.



5. Przykłady z Forum, z rozwiązaniami:



Wszelkie komentarze odnośnie tego postu proszę kierować na Obrazek

Źródła:
1. W. Krysicki, L. Włodarski, ,,Analiza matematyczna w zadaniacz, cz. I'', wydanie XXV
2. Arasis, Odwrotna transformata Laplace'a, 298053.htm
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rozkład LU macierzy- szukanie wyznacznika macierzy
Rozkład LU macierzy- szukanie wyznacznika Rozkład LU macierzy w bardzo łatwy sposób daje nam możliwość policzenia wyznaczni...
 miodzio1988  0
 Proste nierówności wymierne
Witam, mam problem z rozwiązaniem takiej nierówności: \frac{x-3}{x+5}\geqslant \frac{1}{x+5}+2 Mi wychodzi x\in&#40;- \infty ;-14&#41; \cup &#40;-5;+ \infty &#41; , a w odpowiedziach w zbio...
 bagien  2
 Proste calki wymierne
\int \frac{dx}{2x-3x ^{2} } \int \frac{6x-13}{x ^{2}- \frac{7x}{2} + \frac{3}{2} } \int \frac{dx}{6x ^{2}-13x+6 } \int \frac{dx}{1+x-x ^{2} }[/...
 ralf1  1
 Kombinacje (proste- symbol Newtona)
Oblicz maksymalną liczbę punktów, jaką wyznaczają: -trzy proste -pięć prostych -n prostych proszę o pomoc, jest możliwość zastosowania tutaj symbolu Newtona ?...
 heaven  3
 Rozkład na ułamki proste - zadanie 18
Witam mam pytanko czy może ktoś ma jakiś sprytny wzorek na taki rozkładzik : \frac{1}{x&#40;x-a&#41;&#40;x-b&#41;...&#40;x-c&#41;}= \frac{M}{x} + \frac{A}{x-a} + \frac{B}{x-b}+...+ \frac{C}{c-x} z góry dzięki...
 arek1357  3
 Rozlozenie na ulamki proste
Witam. Moglby mi to ktos rozlozyc na ulamki proste takie równanie. Jeden przez s do trzeciej razy w nawiasie s minus piec. Dziekuje. \frac{1}{s^3&#40;s-5&#41;}...
 criger  2
 Rozkład jednostajny nad odcinkiem
Witam Mam problem z zadaniem, mianowicie: Niech X ma rozkład jednostajny nad odcinkiem . Znajdź rozkład zmiennej Y = 3X + 1 Z tego co wiem w rozkładzie j....
 Donica  3
 Rozkład na czynniki - zadanie 49
Mam problem z czterema przykładami z rozkładem na czynniki a&#41; W&#40;x&#41;=&#40;2x-3&#41;&#40;x^2-3&#41;-&#40;2x-3&#41;&#40;5+2x^2&#41; b&#41; W&#40;x&#41;=x^4+324 c&#41; W&...
 dawids13  1
 rozkład gussa
Czy ktoś jest mi wstanie pomóc? mam obliczyć pewne zadanie za pomocą rozkładu gussa a mianowicie treść krótka a zadanie kosmiczne i nic nie kumam Wykonujemy 37 połączeń telefonicznych całkowity czas połączeń to 118 impulsów wiemy że kazdy impuls trwa...
 Anonymous  0
 Proste pytanie - zadanie 9
witam. moje pytanie jest proste ale dopiero co mam logarytmy i sie nad tym zastanawiam. Czy jeśli mam logarytm np log _{2} 4 = b to moge zrobić z tym następująco? : 2log _{2} 2 = b / :2 ...
 scav3r  1
 Oblicz obwód kwadratu na układzie współrzędnych, proste
Witam. Oblicz pole i obwód kwadratu ABCD, dla podanych współrzędnych przeciwległych wierzchołków. Oblicz współrzędne punktu przecięcia przekątnych tego kwadratu. A=(3,8) C=(-3,7) Obliczyłem punkt przecięcia S=0;7,5), ale nie mam pojęcia jak obliczyć ...
 marek252  3
 Wyprowadzenie Wzoru na Rozkład Normalny/Gausa/Metode różni..
Mam do wyprowadzenia 4 wzory 1.Wyprowadzić wzór na rozkład normalny z całki 2.Wyprowadzić wzór na rozkład Gaussa z całki 3.Wyprowadzić wzór na metodę różniczki zupełnej 4.Wyprowadzić wzór na metodę najmniejszych kwadratów 5.Na podstawie rozkładu Ga...
 Langusiek  0
 Dwie proste całeczki
Mógłby mi ktoś podać gotowe rozwiązania takich dwóch całek: 1)\int\sin^5xdx 2)\int\frac{x^3+x+1}{x&#40;x^2+1&#41;}dx...
 divii  7
 Rozkład poissona - niezależność dwóch zmiennych
Jaki jest rozkład liczności potomstwa owada, u którego liczba złożonych jaj ma rozkład Poissona, i z każdego z jaj niezależnie wykluwa się młode z prawdopodobieństwem p? I łatwo sprawdzić, że ten rozkład to: [tex:3j2vh8w...
 matinf  0
 wielomiany, rozkład na czynniki - zadanie 2
przykład na pewno jest dobrze przepisany ??? bo dla m=2mamy W&#40;x&#41;=x ^{3}+x ^{2} -2=&#40;x-1&#41;&#40;x ^{2} +2x+2&#41; co jest zaprzeczeniem nmn nie robisz błedu bo mi to samo wychod...
 maweave  9
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com