szukanie zaawansowane
 [ Posty: 5 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 2 sty 2013, o 11:44 
Użytkownik
Avatar użytkownika

Posty: 986
1. x_n(t)=t^n(1-t), t \in [-1,1].
2. x_n(t)=t^{2n}(1-t^2), t \in [-1,1].

1. \lim_{ n\to \infty }x_n(t)= \lim_{n \to \infty }t^n(1-t)=0
x(t)=\overline{0}.
x_n'(t)=nt^{n-1}-(n+1)t^n \ge 0? (dla t \in [0,1] mieliśmy właśnie tak, ale w tym przypadku t \in [-1,1], a ta nierówność wyżej nie jest spełniona, np dla t=1, n=3).
Jak to dalej rozwiązać?

2. x_n(t)=t^{2n}(1-t^2), t \in [-1,1]

\lim_{ n\to \infty }x_n(t)= \lim_{n \to \infty }t^{2n}(1-t^2)=0 \\ \\ 
x(t)=\overline{0}, t \in [-1,1] \\ \\ 
x_n'(t)=2nt^{2n-1}-(2n+2)t^{2n+1} \ge 0 \Leftrightarrow ... \Leftrightarrow \sqrt{ \frac{n}{n+1} } \ge t.

\parallel x_n-x\parallel=\sup \left\{ \left|t^{2n} \left( 1-t^2 \right) \right|: t \in \left[ -1,1 \right] \right\} =x_n \sqrt{ \frac{n}{n+1} }=
\left( \frac{n}{n+1} \right) ^n\cdot \left( 1-\frac{n}{n+1} \right) = \left( \frac{n}{n+1} \right) ^n\cdot \frac{1}{n+1} \rightarrow 0 przy n \rightarrow \infty czyli x_n zbieżny do x.

Dobrze to jest? :)
Góra
Mężczyzna Offline
PostNapisane: 3 sty 2013, o 01:34 
Użytkownik

Posty: 3487
Lokalizacja: Wrocław
W 1) mamy x_n(-1)=(-1)^n\cdot 2 i to nie jest zbieżne.
Góra
Mężczyzna Offline
PostNapisane: 3 sty 2013, o 01:52 
Korepetytor
Avatar użytkownika

Posty: 3598
Lokalizacja: Lancaster/Cork
w 2) możesz rozważać zbieżność na kawałkach [-1,0] i [0,1] oddzielnie do każdego stosować tw. Diniego:

http://pl.wikipedia.org/wiki/Twierdzenie_Diniego

ale nie jest to konieczne. Zauważ, że x_n(-1)=x_n(1)=0. Teraz pokaż, że (x_n)_{n=1}^\infty zbiega jednostajnie do 0 na (0,1).
Góra
Kobieta Offline
PostNapisane: 3 sty 2013, o 12:16 
Użytkownik
Avatar użytkownika

Posty: 986
Ale 2) rozwiązane moim sposobem jest ok? :)

a co w przypadku, gdy mamy ciąg x_n(t)=t^2+nt dla t \in [-1,1]?
Wystarczy napisać, że granica tego ciągu to \infty przy n \rightarrow  \infty, więc x_n(t) jest rozbieżny?
Góra
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 02:34 
Użytkownik

Posty: 3487
Lokalizacja: Wrocław
Tak, wystaczy. A co do pkt. 2, to szukamy x'_n(t)=0, nie \ge 0, ale poza tym jest dobrze.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 5 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 przykład przestrzeni Banacha  Spektralny  0
 Funkcja ciągła w przestrzeni unormowanej - zadanie 2  Miroslav  2
 Zbiór ograniczony w przestrzeni unormowanej  musialmi  2
 Jeśli X zupełna, to szeregi zbieżne bezwzględnie są zbieżne.  tometomek91  1
 zbiór sprzężony w przestrzeni  anja88  3
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com