[ Posty: 11 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 19:05 
Użytkownik

Posty: 58
Lokalizacja: Kalisz
Mam do udowodnienia spójność przestrzeni \left( 0,1\right). Znalazłem fajny dowód ale dla zbioru obustronnie domkniętego
260223.htm

a jak będzie w tym przypadku? Proszę o podpowiedź.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 19:21 
Gość Specjalny
Avatar użytkownika

Posty: 12855
Lokalizacja: Cieszyn
Jeszcze łatwiej :) Przedział (0,1) jest homeomorficzny z całą prostą poprzez funkcję f:\RR\to(0,1), f(x)=\frac{1}{\pi}\left(\arctg{x}+\frac{\pi}{2}\right). Obraz ciągły przestrzeni spójnej jest przestrzenią spójną, a \RR z topologią naturalną jest przestrzenią spójną.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 19:49 
Użytkownik

Posty: 58
Lokalizacja: Kalisz
kurcze dzięki, ale czy nie da się tego zrobić jakoś na zbiorach, i punktach tak jak w podanym przeze mnie linku? I jeszcze jedno w tym temacie rozumiem wszystko 250780.htm tylko nie rozumiem dlaczego napisałeś, że te dwa przekroje w sumie dadzą cały zbiór A? A co z punktem z? przecież chyba suma tych dwóch zbiorów da nam A \setminus \left\{ z\right\}chyba że nie kumam.... chyba nie kumam :mrgreen:
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 19:53 
Gość Specjalny
Avatar użytkownika

Posty: 12855
Lokalizacja: Cieszyn
Przecież z\not\in A, co założyłem nie wprost. Więc wszystko jest w porządku.

Dobrze szukasz. Stary temat odgrzebałeś :)
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 20:11 
Użytkownik

Posty: 58
Lokalizacja: Kalisz
Kurcze nadal nie kumam, nie da się tego jakoś rozrysować???? :wink:

-- 15 sty 2013, o 19:15 --

Rozumiem, iż założyłeś tam sobie, że nasz zbiór jest niespójny i próbowałeś dojść do sprzeczności?
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 20:40 
Gość Specjalny
Avatar użytkownika

Posty: 12855
Lokalizacja: Cieszyn
Tak - to założyłem.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 20:46 
Użytkownik

Posty: 58
Lokalizacja: Kalisz
Załóżmy nie wprost, że nasz odcinek\left( 0,1\right) jest niespójny i oznaczmy go przez A. Przyjmijmy, że istnieje taki punkt z \in R \setminus A, że 0<z<1.
zatem \left(-\infty,z\right) \cap A po zsumowaniu z przekrojem A \cap \left( z,\infty\right) da nam zbiórA. W myśl definicji, jeżeli zbiór da się przedstawić jako sumę dwóch niepustych, rozłącznych zbiorów otwartych to jest zbiorem niespójnym.
Kurde no i gdzie tu sprzeczność, której mi potrzeba??? :evil:
sorki ale siedzę i ryje już od rańca
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 21:20 
Gość Specjalny
Avatar użytkownika

Posty: 12855
Lokalizacja: Cieszyn
Zauważ, że zbiór U\subset (0,1) jest otwarty w (0,1)\iff jest otwarty w \RR w topologii naturalnej. To wynika z definicji topologii podprzestrzeni, nie będę się tu rozdrabniał. Może innym razem.

Powiedzmy, że (0,1) jest niespójny. Istnieją więc zbiory otwarte rozłączne U,V\subset(0,1) takie, że U\cup V=(0,1). Skoro są ograniczone, to mają oba kresy. Niech 0=\inf U, 1=\sup V. Jeśli \sup U>\inf V, to U\cap V\ne\emptyset. A zatem \sup U\le\inf V. Oczywiście \sup U=\inf V, gdyż inaczej U\cup V\ne(0,1). No więc mamy, że ten element leży w jednym ze zbiorów, np. w U. Przeczy to jego otwartości, bo żaden przedział o środku w tym kresie nie zawiera się w U. Podobnie, gdyby ten kres leżał w V.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 22:08 
Użytkownik
Avatar użytkownika

Posty: 234
Lokalizacja: Suszec
szw1710 napisał(a):
Jeśli \sup U>\inf V, to U\cap V\ne\emptyset.


Nie bardzo rozumiem dlaczego miałoby to zachodzić. Poza tym w rozumowaniu nie założyliśmy dość istotnego założenia, że zbiory U i V są niepuste.

Teraz wystarczy wziąć a \in U, b \in V. Bez straty ogólności możemy założyć, że a < b. Oznaczmy c = \sup(U \cap [a,b]). Wtedy a < c < b (ponieważ istnieje takie \varepsilon > 0, że (a - \varepsilon, a + \varepsilon) \subset U, (b - \varepsilon, b+ \varepsilon) \subset V).
Punkt c musi należeć do któregoś ze zbiorów. Załóżmy, że c \in U. Ponieważ, U jest otwarty, to istnieje takie \varepsilon > 0, że (c - \varepsilon, c + \varepsilon) \subset U. Ale wtedy mamy, że \sup(U \cap [a,b]) > c. Sprzeczność.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 22:24 
Gość Specjalny
Avatar użytkownika

Posty: 12855
Lokalizacja: Cieszyn
Z tymi kresami rzeczywiście - za bardzo zasugerowałem się przedziałami. Dziękuję za czujność.

Wykończenie dowodu podobne do mojego. Przestudiowałem je - w porządku.
Góra
Mężczyzna Offline
PostNapisane: 15 sty 2013, o 22:53 
Użytkownik

Posty: 58
Lokalizacja: Kalisz
Wielkie dzięki Panowie jesteście WIELCY :wink: pozdrawiam i miłego wieczoru

-- 15 sty 2013, o 22:03 --

A tak z ciekawości czy znalazłaby się jakaś inna funkcja (w miarę prosta), która byłaby tym homeomorfizmem z drugiej odpowiedzi? Tak z ciekawości pytam....

-- 16 sty 2013, o 09:31 --

Czyli mogłoby być tak:
Załóżmy nie wprost, że \left( 0,1\right) jest zbiorem niespójnym.
U,V - niepuste otwarte podzbiory \left( 0,1\right), takie że:
U \cup V = \left( 0,1\right)
zbiory te muszą być także parami rozłączne więc:
U \cap V =\emptyset

Weźmy dwa punkty a,b takie, że a<b...... i reszta już dokładnie tak jak to pokazał
Kolega Łukasz.Przontka...... czy coś opuściłem.......
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 11 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Pochodna pochodnej zbioru...
Jak wykazac że pochodna pochodnej zbioru zawiera się w pochodnej zbioru?...
 mapiech  1
 czym się różni zbiór w sobie gęsty od zbioru wszędzie gęsteg
Gęstość w sobie jest bez odwołania do większego zbioru, a gęstość w czymś odwołuje się do większego zbioru (tego czegoś). To są dwa różne pojęcia....
 leapi  3
 wyznacz średnicę zbioru
Tak. Właśnie tak. Odległości mogą być dowolnie duże. Stąd średnica jest nieskończona....
 Karolina93  4
 Domkniętość zbioru - zadanie 2
Zbadać czy następujący podzbiór jest ograniczony, otwarty, domknięty, zwarty, wypukły. \left\{ &#40;x,y&#41; \in \RR^2 : \left| x\right| \le 1, \left| y\right| \le 1 \right\} Mam problem ze stwierdzeniem czy zbiór jes...
 Tifulo  7
 Gęstość zbioru.
Załóżmy, że istnieją takie n_1 \neq n_2, że \left\{ n_1\alpha\right\} = \left\{ n_2\alpha\right\} Wówczas równoważnie: \left\{ n_1\alpha\right\} = \left\{ n_2\alpha\right\...
 Tmkk  8
 brzeg zbioru - zadanie 8
Dla A \subset X definiujemy \textup{Fr A}:=\textup{cl}A\cap \textup{cl}&#40;X\setminus A&#41;. Pokazać, że \textup{Fr A}=\textup{cl}A\setminus \textup{int}A [tex:...
 kalik  1
 Domknięcie zbioru - zadanie 3
Jak wykazać, że cl &#40;A&#41; \backslash cl &#40;B&#41; = cl &#40;A \backslash B&#41; \backslash cl &#40;B&#41;?-- 1 lip 2009, o 13:48 --Można korzystać tylko z tych czterech aksjomatów z defini...
 Starling  1
 Wnętrze i domknięcie zbioru liczb wymiernych
Dzięki ...
 emilka5  4
 Wnętrze zbioru wypukłego jest zbiorem wypukłym....
Bardzo proszę o pomoc! Mam udowodnić, że wnętrze zbioru wypukłego jest zbiorem wypukłym a także, ze domknięcie zbioru wypukłego jest zbiorem wypukłym. Nie wiem jak sobie z tym poradzić! Pomocyyyy ! ...
 dzuta356  1
 Wykazać spójność zbioru
Wykazać że zbiór \left&#40; \RR \setminus \QQ\right&#41;^{3} \cup \QQ ^{3} jest spójny...
 kumpelka212  1
 rodzaj zbioru
Rozwazmy zbiór A \times gdzie A = \left\{ \frac{1}{n}: n \in \NN , n \ge 1\right\} Czy zbior ten jest? A&#41; otwarty B&#41;[/tex...
 kameleon99  3
 domkniecie zbioru
mam zrobic takie zadanie tzn nie wiem jak sie do tego zabrac. Udowodnic ze clA\setminus clB\subseteq cl&#40;A\setminus B&#41; cl oznacza domkniecie bardzo prosze o pomoc z gory dzieki!...
 jagoda18  1
 Spójność i zwartość
Niech A\subset\mathbb{R}^2 będzie podzbiorem płaszczyzny euklidesowej. Przez S&#40;a,r&#41; oznaczamy okrąg na płaszczyźnie o środku w a i promieniu ...
 Majeskas  8
 odległość punktu od zbioru jako funkcja ciągła
Udowodnij, że przy ustalonym A \subset X odległość d(x, A) jest funkcją ciągłą, gdzie X to przestrzeń metryczna, x-dowolny pkt w przestrzeni X, A-zbiór w X....
 pawel2417  3
 Rzutowania, izomorfizmy, spójność.
Niech X będzie przestrzenią normowaną. Zbiór B&#40;X&#41;, ciągłych endomorfizmów (liniowych) przestrzeni X, jest przestrzenią normowaną: \|f\|=\sup...
 xiikzodz  3
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com