szukanie zaawansowane
 [ Posty: 5 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 31 sty 2013, o 22:38 
Użytkownik
Avatar użytkownika

Posty: 149
Lokalizacja: Kraków
Przedstawić geometrycznie relację R i zbadać jej własności: zwrotność,symetryczność,przechodniość,antysymetryczność.
1.
\left\{   \left( x,y \right)    \in \mathbb{R} ^{2} : 4 x ^{2} = y  ^{2}  \vee x ^{2} = y  ^{2}   \right\}

2.

\left\{    \left( x,y \right)    \in \mathbb{R} ^{2} :  x ^{4}    \le  y ^{4}   \right\}



drugie mi wyszło
x \le y .
więc jest zwrotna , nie jest symetryczna , jest przechodnia i jest antysymetryczna . dobrze ?
Góra
Kobieta Offline
PostNapisane: 31 sty 2013, o 23:54 
Użytkownik

Posty: 27
gawli napisał(a):
Przedstawić geometrycznie relację R i zbadać jej własności: zwrotność,symetryczność,przechodniość,antysymetryczność.
1.
\left\{   \left( x,y \right)    \in \mathbb{R} ^{2} : 4 x ^{2} = y  ^{2}  \vee x ^{2} = y  ^{2}   \right\}

zwrotna-tak, symetryczna-tak, przechodnia-tak
gawli napisał(a):
2.

\left\{    \left( x,y \right)    \in \mathbb{R} ^{2} :  x ^{4}    \le  y ^{4}   \right\}



drugie mi wyszło
x \le y .

z tym sie troche nie zgodze... np. x = 1, y = -2
gawli napisał(a):
więc jest zwrotna , nie jest symetryczna , jest przechodnia i jest antysymetryczna . dobrze ?

reszta ok(chyba):)
Góra
Mężczyzna Offline
PostNapisane: 1 lut 2013, o 00:00 
Użytkownik
Avatar użytkownika

Posty: 149
Lokalizacja: Kraków
ok, dzięki , a jak to graficznie przedstawić ?
Góra
Kobieta Offline
PostNapisane: 1 lut 2013, o 00:14 
Użytkownik

Posty: 27
rysujesz w układzie kartezjanskim:)
1. \left| x\right|=\left| y\right| suma 2 \cdot \left|x\right|=\left| y\right|
drugie analogicznie
Góra
Mężczyzna Offline
PostNapisane: 1 lut 2013, o 00:31 
Użytkownik
Avatar użytkownika

Posty: 149
Lokalizacja: Kraków
to rozpisać , że
1. \\ (  -y=|x| \wedge  y=|x| ) \vee ( -y=2|x|  \wedge  y=2|x|)
?
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 5 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 własności relacji - zadanie 17
Witam mam do rozwiązania takie o to zadanie z relacją x \in\ZZ R \subset \ZZ\times\ZZ xRy \iff (x=2 \wedge y=3) trzeba sprawdzić relacje: zwrotność, syme...
 Jokerloop  3
 Relacja rownowaznosci / zbadaj odwzorowanie
Dwa zadanka, bylbym b. wdzieczny za pomoc w ich rozw:) 1.Zbadac czy R jest realcja rownowaznosci w X - jesli tak - opisz jej klasy i sporzadz rysunek wykresu: X=R, R= \lbrace (x,y): x^2-y^2=4(x-y) \rbrace[/tex:323i44...
 SZKL  0
 Przedstaw graficznie iloczyn kartezjański
Zawsze jest nadzieja, że Kula_FCI jednak się douczy... JK...
 kamipia  16
 Opisanie zbiorów z wykorzystaniem ich własności
Każdy z podanych podzbiorów liczb naturalnych można opisać prościej, określając go za pomocą odpowiedniej własności. Wskaż tę własność. a) A = \{0,2,4,6,8,10, \ldots \} b) B = \{1,3,5,7,9,11,\ldots \}[/tex:...
 DeViL  3
 Dowód własności sumy zbiorów potęgowych.
Zadanie autorstwa Prof. Jana Kraszewskiego: Udowodnić, że: (a) P(A) \cap P(B) =P(A \cap B) (b) P(A) \cup P(B) \subseteq P(A \cup B) Doprowadziłe...
 siemaq  4
 Zbadaj rownolicznosc zbioru [0,1) oraz zbioru (0,2]
Witam, chcialbym sie upewnic czy robie dobrze, a jezeli nie to jak sie za takie zadanie zabrac Zbadaj rownolicznosc zbioru ja sie zabralem tak: Dwa przedzialy [/...
 Kramarz  5
 Udowodnij własności iloczynu kartezjańskiego - zadanie 6
Witam, mam pytanie odnośnie dwóch przykładów udowodnij że: 1. Dla dowolnych, A,B,C, \ \ A \times \left( B \setminus C \right) \ = \left( A \times B\right) \setminus \left( A \times C \right) 1....
 Peter93  1
 Jakie własności z pośród siedmiu posiada ta relacja
R \subset C ^{2} , xRy \Leftrightarrow Re (i \times x) = Im \left( i \times y\right)...
 Paulinka246  2
 własności relacji niepustośc surjekcja jednokładność
Niech S zawiera się w \RR^{2} . Na podstawie definicji wyznaczyć dziedzinę i przeciwdziedzinę relacji, sprawdzić czy relacja jest niepusta, surjektywna, prawo i lewostronnie jednoznaczna, jeś...
 catarinaa  0
 Tożsamości zbiorów, własności funkcji i relacji - zadanie 8
Własnie mi tez zależy na tych zadaniach i rozwiązałem obrazy tej funkcji: a) = (2x-y: x \in \mathbb N \wedge y \in ...
 xpressduzy  52
 zbadaj inkluzje zachodzącą między A,B,C i proste dowody.
1. zbadać jakie relacje inkluzji zachodzą miedzy zbiorami A,B,C jeśli: a) (A-C) \cup B=A \cup B b) (A \cup B)-C=(A-C) \cup B c) ((A \cap B)...
 fanch  0
 Sprawdic własności relacji
Witam mam takie zadanko : Sprawdź własności poniższych relacji: a) xRy \Leftrightarrow y|x dla x,y \in N b) xRy \Leftrightarrow 2|x-y dla x,y [tex:2n648st...
 pawelekk  0
 Udowodnij własności funkcji
Dla dowolnych dwóch zbiorów X i Y i funkcji f:X \rightarrow Y definiujemy funkcję g:P(Y) \rightarrow P(X) wzorem: [tex...
 Int  3
 Zbiór Cantora, własności
Witajcie, wiem, że to kolejny temat o zbiorze Cantora, ale nie znalazłam w nich odpowiedzi na pytania. Skorzystałam z niektórych wskazówek, pozostały mi jeszcze dwa zagadnienia. 1) mam udowodnić, że zbiór Cantora jest w sobie gęsty. Z def na zajęciac...
 milka333  11
 Omówienie własności zbioru
Piszę po raz pierwszy na tym forum, proszę o wybaczenie ewentualnych błędów Zadanie brzmi tak: W prostokątnym układzie współrzędnych zaznacz zbiór [tex:p9...
 Toleslaw  0
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com