szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 5 cze 2013, o 23:11 
Użytkownik

Posty: 256
Lokalizacja: Tarnów
proszę o pomoc w rozwiązaniu takiego zadania

niech A,B,X będą zbiorami i A,B \subseteq X

A \cup B jest z definicji najmniejszym podzbiorem X zawierającym zbiory A i B

z tej definicji pokazać, że A \subseteq B \Leftrightarrow A \cup B=B
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 5 cze 2013, o 23:24 
Administrator

Posty: 17688
Lokalizacja: Wrocław
\Leftarrow - od razu.
\Rightarrow - jedno zawieranie od razu, przy drugim korzystasz z minimalności.

JK
Góra
Mężczyzna Offline
PostNapisane: 6 cze 2013, o 10:40 
Użytkownik

Posty: 256
Lokalizacja: Tarnów
mam pytanie jak powinien wyglądać dowód z tą minimalnością

niech A \cup B \subseteq Z \subseteq X. Gdyby było A \cup B \subseteq Z \subset B, to istniałby x \in B t.że x \notin Z, lecz wobec B \subseteq A \cup B \subseteq Z jest to niemożliwe. Z drugiej strony z założenia A \subseteq B i z B \subseteq B wynika, że A \cup B \subseteq B

coś takiego?
Góra
Mężczyzna Offline
PostNapisane: 6 cze 2013, o 16:54 
Administrator

Posty: 17688
Lokalizacja: Wrocław
Nie.
Czeczot napisał(a):
Gdyby było A \cup B \subseteq Z \subset B,

Skąd to założenie? Przecie dowodząc nie wprost zakładasz, że A \cup B\not \subseteq B.

JK
Góra
Mężczyzna Offline
PostNapisane: 6 cze 2013, o 20:44 
Użytkownik

Posty: 256
Lokalizacja: Tarnów
to poprawiam się w takim razie - chcę pokazać, że A \cup B \subseteq B a zgodnie z definicją A \cup B jest najmniejszym zbiorem zawierającym A i B, a ponieważ zbiór B też te zbiory zawiera ( z założenia i z prawa B \subseteq B), więc jest nie mniejszy niż A \cup B, a więc A \cup B \subseteq B

coś takiego?
Góra
Mężczyzna Offline
PostNapisane: 6 cze 2013, o 22:16 
Administrator

Posty: 17688
Lokalizacja: Wrocław
OK.

JK
Góra
Mężczyzna Offline
PostNapisane: 6 cze 2013, o 22:17 
Użytkownik

Posty: 256
Lokalizacja: Tarnów
dziękuję, teraz widzę jakie głupoty przedtem napisałem :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Definicja Równoliczności  cinrex  10
 Sumy, przekroje  Browning0  11
 dwie sumy mnogościowe  leszczu450  45
 Zbiór ilorazowy sumy mnogosciowej dwoch relacji równoważnośc  lgamon  16
 Wyznaczanie sumy , części wspólnej  tilos  0
cron
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com