szukanie zaawansowane
 [ Posty: 4 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 28 maja 2007, o 18:33 
Użytkownik

Posty: 4
Lokalizacja: Świdnik
Witam. Mam do przerobienia całki z Krysickiego. Z 62 całek połowę zrobiłem sam :P. Jedną czwartą znalazłem na tym forum (lub przykłady analogiczne). Ale nadal zostało parę, z którymi nie mam pojęcia co zrobić. Raczej nie będę potrzebował całkowitych rozwiązań, tylko wskazówkę co podstawić lub jaki "myk" zastosować. Z góry dzięki za pomoc.

PS. Pomijam "dx". Są to naturalnie całki nieoznaczone i powinno się je rozwiązywać elementarnymi sposobami.

1.
\int\frac{4\sqrt[4]{5x^3}}{6\sqrt[3]{x}}
Tutaj wychodzi jakieś 125 do potęgi 17 w odpowiedziach. Jak do tego dojść? :|

2.
\int\frac{3+5\sqrt[3]{x^2}}{\sqrt{x^3}}
Tu z koleji wydawało się proste i mi wyszło:
2x^{\frac{2}{3}}+\frac{15}{4}x^{\frac{4}{3}}
a w odpowiedziach zupełnie co innego:
\frac{-6}{\sqrt{x}}+30\sqrt[6]{x}
Pomyłka? Czy ja coś źle zrobiłem?

3.
\int\frac{x-1}{\sqrt[3]{x^3+1}}
Kilka wariantów tego widziałem na forum. Zazwyczaj ograniczało się to do "podstaw t=coś" i było kilka pomysłów ale nie udało mi się dojść do rozwiązania. Tutaj bym prosił o kompletne rozwiązanie.

4.
\int{xln(1+x^2)}

5.
\int{6^{1-x}}

6.
\int{\frac{ln\left|arctgx\right|}{1+x^2}}

7.
\int{x^4(1+x)^3}

8.
\int{x^2e^x}

9.
\int{x^3e^x}

10.
\int{x^4e^{2x}}

Podejrzewam, że sposób rozwiązania 3 ostatnich jest jednakowy, tylko że nie znam tego sposobu :|
Zapewne prosta wskazówka mi pomoże ;)

11.
\int{(ln\left|x\right|)^3}

12.
\int{\frac{(ln\left|x\right|)^2}{x^5}}

Tutaj otrzymałem wynik bardzo zbliżony do podanego w rozwiązaniach. Proszę wskazać mój błąd:

Na początek części:
f=(ln\left|x\right|)^2 => f^{'}=\frac{2}{x}
g^{'}=x^{-5} => g=\frac{x^{-4}}{-4}
Mamy:
\int{\frac{(ln\left|x\right|)^2}{x^5}}=
=(ln\left|x\right|)^2*\frac{x^{-4}}{4}+\int{\frac{2x^{-4}}{4x}}=
=(ln\left|x\right|)^2*\frac{x^{-4}}{4}+\frac{1}{2}\int{x^{-5}}=
=(ln\left|x\right|)^2*\frac{x^{-4}}{4}+\frac{1}{2}*\frac{x^{-4}}{-4}=
=(ln\left|x\right|)^2*\frac{8x^{-4}}{32}+\frac{4x^{-4}}{-32}
No i jak nie wykombinować, nie wyjdzie mi odpowiedź z książki:
=-\frac{1}{32x^4}(8(ln\left|x\right|)^2+4ln\left|x\right|+1)

Jeszcze raz z góry dzięki tym co pomogą.
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 28 maja 2007, o 18:41 
Gość Specjalny
Avatar użytkownika

Posty: 2656
Lokalizacja: Wrocław/Sieradz
jarekexe napisał(a):
1.

doprowadź do postaci wielomianu i potem \int x^{n}=\frac{1}{n+1}x^{n+1}+C

jarekexe napisał(a):
2.

rozłóż na sumę ułamków i potem chyba nie powinno byc problemów ;)

jarekexe napisał(a):
4.

podstawienie t=1+x^{2}

jarekexe napisał(a):
5.

podstawienie 1-x=t

jarekexe napisał(a):
6.

podstawienie t=arctgx

jarekexe napisał(a):
7.

rozłożyc na wielomian i z wzoru \int x^{n}=\frac{1}{n+1}x^{n+1}+C

jarekexe napisał(a):
8., 9., 10.

przez części
Góra
Mężczyzna Offline
PostNapisane: 28 maja 2007, o 18:51 
Użytkownik
Avatar użytkownika

Posty: 1094
Lokalizacja: Olesno
4.
x^2+1=t, \ \ x dx = \frac{1}{2} dt \\ 
\frac{1}{2} \int \ln t dt \\
8,9,10,6 przez czesci
8. \ v=x^2, \ \ du = e^x \\
12.
( \ln |x|)^2' = 2 \frac{\ln|x|}{x} \\
lepsze by bylo podstawienie
\ln x = t, \ \ \frac{dx}{x} = dt, \ \ x=e^t \\ 
\int \frac{t^2}{e^{4t}} =t^2  e^{-4t} dt
dalej tak jak przyklad 8, podobnie zrob 12
Góra
Mężczyzna Offline
PostNapisane: 28 maja 2007, o 19:17 
Użytkownik

Posty: 4
Lokalizacja: Świdnik
Szybcy jesteście :|

No to po kolei bo nadal mam problemy.

1.
\int\frac{4\sqrt[4]{5x^3}}{6\sqrt[3]{x}}=\frac{2}{3}\int{\frac{5^\frac{1}{4}x^\frac{3}{4}}{x^\frac{1}{3}}}=
=\frac{7}{2}\int{x^\frac{5}{12}}=\frac{7}{2}\int{\frac{x^\frac{17}{12}}{\frac{17}{12}}}=\frac{42}{17}\sqrt[12]{x^{17}}

No i skąd tu ma się wziąść 125 pod pierwiastkiem? :|

[ Dodano: 28 Maj 2007, 19:20 ]
2.

No właśnie tak robiłem, ale weźmy pierwszy ułamek:

3\int{\frac{1}{\sqrt{x^3}}}=3\int{x^{-\frac{1}{3}}}=3\frac{x^\frac{2}{3}}{\frac{2}{3}}=\frac{9}{2}x^\frac{2}{3}

A w odpowiedziach kompletnie co innego (patrz pierwszy post)

[ Dodano: 28 Maj 2007, 19:26 ]
4.

Sorki ale ile wynosi całka z logarytmu ?? :| byłem przekonany, że coś takiego nie istnieje.

5.

No tak też robiłem: t=1-x, dx=-dt
\int{6^{1-x}}=-\int{6^t}=-\frac{6^{t+1}}{t+1}=-\frac{6^x}{x}

A tu w rozwiązaniu jakiś logarytm :|

[ Dodano: 28 Maj 2007, 19:32 ]
6.
Po podstawieniu t=arctgx otrzymuję znowu całkę z logarytmu :| Jak to się liczy??

7.
No tak... jakoś myślałem, że to będzie jakiś "myk" i się szybko policzy.

[ Dodano: 28 Maj 2007, 19:40 ]
8. Tak samo próbowałem :P

v=x^2=>dv=2x
du=e^x=>u=e^x
Czyli:
2xe^x-\int{2xe^x}=2xe^x-2\int{xe^x}
Teraz chyba drugi raz przez części:
v=x=>dv=dx
du=e^x=>u=e^x
Mamy:
2xe^x-2(xe^x-\int{e^x})=2xe^x-2xe^x+2e^x
No i bardzo ładny wynik ale w odpowiedziach jest:
(x^2-2x+2)e^x

[ Dodano: 28 Maj 2007, 19:42 ]
No i 12 nie tykam dopóki nie zrozumiem 8,9,10 ;)

A co z 3 i 11 ?

[ Dodano: 30 Maj 2007, 06:42 ]
Update:

Zad 4,6 - już wiem jak się liczy całkę z logarytmu :P
Zad 8,9,10 - hehe też już widzę mój błąd

Zad 1,2,5,12 - czy ktoś może potwierdzić czy to jest dobrze? ewentualnie wskazać błąd?

Zad 3,11 - nadal czekam :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 4 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Całki nieoznaczone - zadanie 18
Witam. Nie policzyć metodą przez części: \int \frac{x cosxdx}{\sin^3x} \int \sqrt{1+x^2}dx oraz spra...
 poczekaj  1
 problem z obliczeniem całki - zadanie 3
Witam podczas przygotowywania się do poprawki natrafilem na kilka problemów mianowicie: 1) \int \frac{xdx}{ \sqrt{2+4x-x ^{2} } } starałem się zwinąć mianownik do postaci (x-2)^2 -6 i podstawiać zmienna zastępczą ale c...
 crossuuuuu  4
 Wyznaczanie granic całkowania - całki potrójne
1. Oblicz: \iiint(2z-x)dxdydz, gdzie obszar całkowania to czworościan o wierzchołkach: A(1,0,0), B(0,1,0)[/...
 JarTSW  3
 Pytanie dotyczące wartości całki podwójnej
Czy \int_{}^{} \int_{}^{} (2x^2-4xy^3)dxdy= \int_{-2}^{2}( \int_{-1}^{1} 2x^2y-4xy^3dx)dy=4?...
 darek88  8
 Całki dwie...
Mam problem z poniższymi całkami: \ oraz \[\int {\frac{{\left( {1 - u^2 } \right)^n }}{u}\sin [2k&#4...
 rodzyneka  3
 Przy użyciu całki Riemanna znajdz granice
Witam mam problem z pewnym zadaniem nie wiem w ogole, jak to ugryźć bo twierdzenie jest zawiłe, może by ktoś pokazał jak to działa na danym przykłądzie, mam znacznie więcej podpuntków, ale może chociaż jeden. Znajdź granicę ciągów zadanych poniższymi...
 KUOPA  3
 oblicz całki nieoznaczone - zadanie 8
I z czym masz problem? pierwsze przez podstawienie, 2 przez części....
 RadzioBse  3
 całki nieoznaczone - zadanie 38
\int ( arcsin x + arccos x ) dx -> czy jeżeli jest w nawiasie to da sie rozbic na dwie całki? \int x ln (x+1)dx \int cos^{4}xdx \i...
 Kasia-Wi  5
 całki nieoznaczone - zadanie 121
Witam, mam problem, ponieważ mam do rozwiązania całki , które nie za bardzo potrafię rozwiązać, bądź rozwiązuję z błędami, ponieważ jak się okazało mam niekompletne notatki od kolegów... Jutro mam egzamin i będę miał podobne zadania, więc [b:3dfcll02...
 vraq  13
 Pole powierzchni i objetość bryły(całki podwójne)
Granice całkowania odczytasz z rysunku 2. Jakie równanie?...
 Kobe9999  5
 Obliczyc wartość całki niewłaściwej
\int \limits_{0}^{2} \frac{dx}{\sqrt{2x-x^2}}...
 `vekan  3
 Całki wielokrotne-obliczanie objętości
Mam pytanie jakie będą granice całek w zadaniu Wyznaczyć objętość bryły z równań {x^2} +{y^2}+{z^2} \le 16, dla y \le 0 i x \ge 0 i właśnie nie wiem jaka wartosc ...
 ewelina54321  1
 Obliczyć całki - zadanie 33
dało by rade zamieścić obliczenia ?...
 Pit3rs  5
 Całki - zadanie 40
Prosiłbym o pomoc w obliczeniu kilku całek: 1. \int \frac{1+cosx}{(cosx+sinx+2)sin^2x}dx 2. \int ft(\frac{l...
 Lyor  1
 Sposób rozwiazania całki wmiernej z wielomianem kwadrakowy
\int \frac{x^{2}+7x+20}{x^{2}+6x+25}dx Jakim sposobem rozwiązać tę całkę?...
 magnus2005  5
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com