szukanie zaawansowane
 [ Posty: 4 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 6 mar 2005, o 17:46 
Gość Specjalny
Avatar użytkownika

Posty: 1729
Lokalizacja: Koszalin
ZBIÓR ZADAŃ ROZWIĄZANYCH NA FORUM - WIELOMIANY

(po kliknięciu na numer zadania pojawi się wątek wraz z rozwiązaniem)

Aktualizacja: 16.09.2011


1. Wyznacz wartości parametru a, dla którego suma współczynników wielomianu W \left( x \right)  =  \left(  \left( x^{2} + 5x - 7 \right) ^{1999}  \right)  \left( ax^{2} + 2x - 2000 \right) wynosi -2.

2. Wyznaczyć liczby p i q takie, że liczba 3 jest dwukrotnym pierwiastkiem wielomianu W(x) = x^3 - 5x^2 + px +q.

3. Wyznaczyć współczynniki a,b funkcji f(x) = ax^2 + bx - \frac{3}{4} wiedząc, że osiąga ona wartość najmniejszą dla x=1 i punkt o współrzędnych (5,3) należy do jej wykresu.

4. Funkcja kwadratowa f(x) = ax^2 + bx+c, gdzie a \neq 0 o wspołczynnikach całkowitych ma dokładnie 1 miejsce zerowe. Wyznaczyć te funkcje jeżeli wiadomo, że do jej wykresu należą punkty (0,2) oraz (4,50).

5. Wyznacz wszystkie takie liczby rzeczywste x, że wartość wyrażenia \frac{2x^{3} + 5x^{2} + 4}{2x+1} należy do zbioru liczb całkowitych.

6. Dla jakiej wartości parametru m przy dzieleniu wielomianu 3x^{3} + mx^{2} - 4x + 2 przez x-2 otrzymamy resztę równą 6?

7. Wyznaczyć a, b takie, że wielomian x^4 - 3x^{3} + 6x^{2} +ax +b jest podzielny przez x^2 - 1.

8. Wykazać, że dla każdego naturalnego n, wielomian (x-2)^{2n} + (x-1)^{n} - 1 jest podzielny przez (x-1)(x-2).

9. Wyznaczyć wartości m, dla których równanie (m-2)x^4 - 2(m+3)x^2 + (m-1) = 0 ma cztery pierwiastki różne od 0.

10. Wiedząc, że liczby 2 i 3 są pierwiastkami równania 2x^{3} + mx^2 - 13x + n = 0 obliczyć m i n oraz wyznaczyć trzeci pierwiastek.

11. Wyznaczyć sumę współczynników wielomianu \left( x^{3} - x + 1 \right) ^{50} +  \left( 2x^{2} - 2x + 1 \right) ^{30}.

12. Sprawdzić, nie wykonując dzielenia, czy wielomian x^{10} + 3x^2 - 1 ma co najmniej jeden pierwiastek rzeczywisty.

13. Sprawdzić bez dzielenia, czy liczba 1 jest co najmniej dwukrotnym pierwiastkiem wielomianu 10x^{11} - 11x^{10} + 1.

14. Pokazać, że nie ma pierwiastków następujący wielomian: x^{4} - x^{2} + 1.

15. Niech p(x) będzie wielomianem o współczynnikach rzeczywistych. Wyznaczyć wartość wyrażenia \int_{0}^{2}  \left( p '  \left( x \right)  \cdot x \right)  \mbox{d}x wiedząc, że p(0) = p(2) = 3 \ \wedge \ p'(0) = p'(2) = -1.

16. Liczba p jest pierwiastkiem wielomianu W(x). Wyznacz pozostałe pierwiastki rownania W(x)=0, wiedząc, że W(x) = 6x^3 - 11x^2 + 6x - 1, p = \frac{1}{2}.

17. Wyznacz i podaj krotność pierwiastków wielomianu W(x) = -x^{4} \left( x^2 - 1 \right)  \left( 3x+3 \right)  \left( x+1 \right) ^2.

18. Reszta z dzielenia wielomianu W(x) przez x-2 wynosi 3. Reszta z dzielenia W(x) przez x+1 wynosi -6. Ile wynosi reszta z dzielenia tego wielomianu przez x^2 - x - 2?

19. Dla jakich wartości parametru m iloczyn wielomianów f i g jest równy wielomianowi h, gdzie:
a) f(x) = \frac{1}{2}mx - 2,
g(x) = x + 2m + 1,
h(x) = x^2 +4x - 21

b) f(x) = mx + 1,
g(x) = x - 2m.
h(x) = 2x^2 - 3x + 1

20. Podać przykład wielomianu o współczynnikach całkowitych, posiadającego pierwiastek \sqrt{5} + \sqrt{7}.

21. Pokazać, że dla dowolnego całkowitego c, wartości wielomianu x^5 - 5x^3 + 4x są liczbami podzielnymi przez 120.

22. Liczba 1 jest podwójnym pierwiastkiem wielomianu W(x) = x^3 + mx^2 - 7x + n. Znajdź trzeci pierwiastek tego wielomianu.

23. Rozłożyć na czynniki (stopnia najniżej pierwszego) wielomiany:
W(x) = x^4 + 7x^3 + 10x^2 \\
 W(x) = 8x^5 + 6x^4 - 2x^3 \\
 W(x) = 2x^3 + 5x^2 - 3x

24. Obliczyć sumę współczynników wielomianu W(x) =  \left( 4x^2 - 3x - 2 \right) ^{2003}.

25. Udowodnij wzory Viete'a dla wielomianu stopnia 3.

26. Rozłożyć na czynniki wielomian W(x) = x^4 + x^2 + 1.

27. Reszta z dzielenia wielomianu W(x) przez dwumian x-2 jest równa 5, a reszta z dzielenia W(x) przez x-3 wynosi 7. Wyznacz reszte z dzielenia W(x) przez (x-2)(x-3).

28. Wyznacz resztę z dzielenia wielomianu W(x) przez wielomian P(x) = (x+1)(x-1)(x-2) wiedząc, że W(-1) = -1 , W(1) = 1 , W(2) = 2.

29. Wiedząc, że równanie x^2 + x^3 - 7x^2 + ax + b = 0 ma rozwiązania x=1 oraz x=-1, rozwiązać nierówność: x^4 + x^3 - 7x^2 + ax+  b > 0.

30. Nie używając dzielenia wielomianów rozstrzygnij, czy wielomian d(x) = x^2 - 1 jest dzielnikiem w(x) = -3x^4 + 4x^2 - 5x + 7.

31. Wyznacz wszystkie wartości parametru a, dla których wielomian W(x) = (4a+3)x^{3} + 9ax^{2} + 6ax + a + 2 może być przedstawiony jako trzecia potęga pewnego dwumianu.

32. Rozłóż na czynniki wielomian x^{4} + 1.

33. Wyznacz stopień wielomianu W(x) =  \left( x+1 \right)  \left( x^2+1 \right)  \left( x^4+1 \right) \ldots \left( x^{2n} +1 \right).

34. Wyznacz współczynniki przy x^9 i x^{10} w wielomianie W(x) =  \left( x-1 \right)  \left( x-2 \right)  \left( x-3 \right) \ldots \left( x-10 \right).

35. Wyznacz sumę współczynników wielomianu W(x) = 3 \left(  \left( x^3-3x+3 \right) ^{2002} \right) -4 \left(  \left( x^3+2x^2-4 \right) ^{2003} \right).

36. Wykaż, że jeżeli f(x) jest dowolnym wielomianem, zaś para; a - dowolną liczbą rzeczywistą, to wielomian f(x) - f(a) jest podzielny przez x - a.

37. Niech r(p,q) oznacza resztę z dzielenia wielomianu p(x) przez q(x). Udowodnij, że wyrażenie r \left( p_{1}+p_{2},q \right) =r \left( p_{1},q \right) +r \left( p_{2},q \right) jest dzielnikiem r \left(  \left( p_{1} \right)  \left( p_{2} \right) ,q \right) =r \left(  \left[ r \left( p_{1},q \right)  \right]  \left[ r \left( p_{2},q \right)  \right] ,q \right).

38. Dla jakich wartości parametru a, równanie x^4 - (a+1)x^2 + 4 = 0 ma cztery różne pierwiastki?

39. Udowodnij, że dla każdego x rzeczywistego, zachodzi nierówność x^{12} - x^9 + x^4 - x + 1>0.

40. Rozłóż na czynniki wielomiany:
W(x) = 2x^3 - 5x^2 - 8x + 20 \\
 W(x) = x^3 - 2x^2 - 5x + 6

41. Rozłóż na czynniki i podaj pierwiastki wielomianów:
W(x) = 125x^3 - 27 \\
 W(x) = 8x^4 + 27x \\
 W(x) = 4x^4 + 9

42. Wyznacz wartości parametru a, tak, że suma współczynników wielomianu W(x) =  \left( x^2 + 5x - 7 \right) ^{1999} \left( ax^2 +2x - 2000 \right) wynosiła -2.

43. Suma pierwiastków trójmianu kwadratowego g jest równa -1, zaś iloczyn tych pierwiastków -2. Zapisz wzór w postaci ogólnej jeśli g(0)=6.

44. Rozłóż na czynniki wielomiany:
x+y+2x+2y \\
 ax+ay+bx-by \\
 my-m-y+1 \\
 a+ab-b-1 \\
 3x^2+2x+3xy+2y \\
 mx+my+kx+gx+ky+gy

45. Nie wykonując dzielenia znajdż resztę z dzielenia wielomianu W(x) przez wielomian U(x), wiedząc że W(x) = x^5 - x^3 + x^2 - 1 i U(x) = (x-1)(x+1)(x+2).

46. Rozłóż wielomian ax-ay+bx-by na czynniki.

47. Wielomian rzeczywisty W(x) przedstawić w postaci iloczynu nierozkładalnych czynników rzeczywistych, jeżeli W(x) = x^6 + 8.

48. Dowód twierdzienia o istnieniu pierwiastków wielomianu o współczynnikach całkowitych.

49. Bez obliczania pierwiastków wyznaczyć sumę ich odwrotności, jeżeli równanie ma postać 2x^2 + 4x +1 = 0.

50. Rozwiązać równanie |x^3+x+1| = 1 i nierówność: \left|  x^2-4\right|   \left( x^3-1 \right) <0.

51. Dla jakich wartości parametrów a, b liczba x_0 = -1 jest pierwiastkiem wielomianu W(x)=6x^4+8x^3-8x^2+ax+b?

52. Znajdź trójmian kwadratowy y=x^2 + bx + c, wiedząc, że suma jego pierwiastków jest równa 8 i dla x=0 przyjmuje wartość 15.

53. Wiedząc, że trójmian ax^2 + bx + c przyjmuje wartość największą równą 11 dla x=3, obliczyć resztę z dzielenia wielomianu W(x) = 2x^4+4x^3+ax^2+bx+2 przez x-1.

54. Przy jakich wartościach a, b trójmian ax^{20} + bx^{19} + 1 dzieli się przez x^2 + x + 1?

55. Dany jest wielomian W(x) = ax^2 + bx + c, przy czym:
W \left( 1 \right)  = m+2 \\
 W \left( \frac{1}{3} \right)  = m \\
 W \left( - \frac{1}{3} \right)  = m - 2
gdzie m jest pewną liczbą. Pokazać, że W(x) jest wielomianem stopnia 1.

56. Dla jakich wartości parametru m, wielomian P(x) = x^4 + mx^3 -  \left( m+1 \right) x^2 - mx + m ma cztery pierwiastki?

57. Doprowadź do postaci iloczynowej lewą stronę równania 24x^3 -2x^2 -9x +2 = 0.
Góra
Mężczyzna Offline
PostNapisane: 21 mar 2009, o 10:08 
Użytkownik
Avatar użytkownika

Posty: 1979
Lokalizacja: inowrocław
Czy ktoś mógłby poprawić zapis w zadaniu 15?
Góra
Mężczyzna Offline
PostNapisane: 23 gru 2010, o 14:42 
Użytkownik

Posty: 2
Lokalizacja: Kraków
zadanie 1.
Suma współczynników równa sie W(1) więc:
W(1)=-2

W(1)=((1+5-7)^{1999})(a+2-2000)=(-1)^{1999}(a-1998)=-a+1998

-2=-a+1998

a=2000
Góra
Mężczyzna Offline
PostNapisane: 23 gru 2010, o 14:46 
Użytkownik
Avatar użytkownika

Posty: 32928
Lokalizacja: miodzio1988@wp.pl
zjemcichleb93, w treści zadania masz przecież napisane, że W(1)=-2

Więc źle zrobiłeś zadanie. Po kliknięciu na numerek zadania przecież masz poprawne rozwiązanie
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 4 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 rozłóż wielomiany - zadanie 2
a&#41; \ W&#40;x&#41;=x ^{4} -4x ^{3} +5x ^{2} -2x\\ b&#41; \ W&#40;x&#41;=6x ^{8} -12x ^{6} -5x ^{5} +10x ^{3} +x ^{2} -2...
 malowana  5
 Wielomiany - problem
Sposób podany przez @mat3j86 pokaże tylko równość wielomianów w dwóch miejscach - co z równością całych wielomianów ma niewiele wspólnego....
 aleo  6
 Rozłóż wielomiany na czynniki - zadanie 3
x^3+6x^2-x-30=&#40;x^3+6x^2 &#41;+&#40;-x-30&#41;=x^2 &#40;x+6&#41;-&#40;x-30&#41;=&#40;x+6&#41;&#40;x^2-30&#41;= =(x+6)(x-30)(x+30) Ma być (x-2)(x+3)(x+5). To trzeba pewnie z Bezouta, ale dlaczego? Bo (x-30) trza rozło...
 PCcik  18
 Znajdź liczby p i q.. WIELOMIANY!
Znajdź liczby p i q, dla których równanie ma jeden pierwiastek trzykrotny. 8x^{3} - 36x^{2} + px + q = 0...
 3ron1  1
 Wielomiany, mnożenie
Powinno wyjść: -35-53 x-40 x^2+40 x^3+40 x^4+32 x^5...
 kelpie23  3
 Wyznacz wielomiany - zadanie 6
1) Pierwiastkami wielomianu W&#40;x&#41;=x ^{3}+px ^{2}-qx+6 są liczby 1 i -3. Wyznacz wartość współczynników p i q[/tex...
 Kubeush  4
 rozloz na czynniki wielomiany.
rozloz na czynniki wielomian x^3 - 2x^2 - 5x +6 moje rozwiazanie wydaje sie byc za krotkie, wiec prosilabym o pomoc. dziekuje. ...
 pln17  1
 wielomiany (wyznaczenie wartości, nierówność)
zad.2 Dany jest wielomian W&#40;P&#41;=-2x^{3}+kx^{2}+4x-8 a)Wyznacz wartość k tak, aby reszta z dzielenia wielomianu W przez dwumian x+1 była równa (-6). b)Dla znalezionej wartości k rozłóż wielomian na czynniki liniow...
 madonna54  1
 Wielomiany podzielność, pierwiastki
Witam! Mam problem z kilkoma zadaniami i potrzebuje pomocy: 2.27 Oblicz współczynniki a, b, c, d wielomianu W określonego wzorem W&#40;x&#41;=ax^{3}+bx^{2}+cx+d, gdzie [tex:1zd0mpe...
 pawelmal  9
 Zbiór zadań z wielomianów.
Za początku samym chcę zaznaczyć że nie było mnie na lekcjach na którch to robiliśmy, tak więc jak ktoś będzie to robił to niech robi tak jak &quot;dla debila&quot; tzn. tak żebym zrozumiał. ...
 hubertt95  7
 W prostokątnym układzie współrz. narysuj zbiór [Matura]
R-2 Zadanie 5. W prostokątnym układzie współrzędnych narysuj zbiór tych wszystich punktów o współrzędnych &#40;b, c&#41;, dla których różne pierwiastkix _{1} , x _{2} równania x...
 mariusz689  2
 Wielomiany Nierówność.
\frac{x ^{3}-6x ^{2} +3x+10 }{x+1} \ge 0 Pokaże mi ktoś jak zrobić to zadanie?...
 strawberry92  1
 Wielomiany z wartością bezwzględną!
Wyrazy z minusami przenieś na drugą stronę - potem (w zasadzie) też będą przypadki....
 Piotrek172  5
 Wielomiany - czy taki wielomian istnieje
Jak matematycznie udowodnić czy istnieje taki wielomian: W(2)=5 W(-2)=8 Wielomian ma być stopnia trzeciego, a współczynniki muszą być liczbami całkowitymi. Pozdrawiam...
 Adasiek  1
 Wielomiany (4zadania)
Zadanie 3 Z Twierdzenia Bézouta, które mówi: Liczba a jest miejscem zerowym wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) jest podzielny przez dwumian (x − a), czyli W(a)=0 &lt;=&gt; (x-a)|W(x). Ogólniej, wartość wielomianu w punkcie W(a) ...
 Cieniu  4
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com