szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 mar 2005, o 23:19 
Gość Specjalny
Avatar użytkownika

Posty: 1729
Lokalizacja: Koszalin
ZBIÓR ZADAŃ ROZWIĄZANYCH NA FORUM - KOMBINATORYKA


MADE BY ARBOOZ


(po kliknięciu na numer zadania pojawi się wątek z rozwiązaniem)


1. Wyznaczyć liczbę dzielników liczby 36000.

2. Wyznaczyć liczbę rozwiązań nierówności w liczbach naturalnych

a + b + c + d + e \leq 2400

3. Wyznaczyć liczbę:

a)wszystkich liczb dwucyfrowych i wszystkich liczb trzycyfrowych

b)liczb pięciocyfrowych zaczynających się od 12

c)liczb trzycyfrowych, w których zapisie nie występują cyfry 4 i 5

4. W partii 40 monitorów 4 są uszkodzone.Wybieramy 3 monitory.

a) Na ile sposobów można dokonać takiego wyboru,żeby żaden z wybranych monitorów nie był uszkodzony?

b) Na ile sposobów można dokonać takiego wyboru, żeby jeden z wybranych monitorów był uszkodzony?

5.

a) Liczba permutacji zbioru (n+1) - elementowego jest o 600 większa od liczby permutacji zbioru n-elementowego.Wyznacz n.

b) liczba permutacji zbioru (n+3) - elementowego jest 120 razy większa od liczby permutacji zbioru n-elementowego.Ile jest równe n?

6. Na ile sposobów mozna ustawić w ciąg elementy:

a_1 , a_2 , a_ 3 , ... , a_n

tak, aby elementy a1 i an nie stały obok siebie?

7. Na ile sposobow można podzielić 12 osobową grupe turystow na 2 grupy 7 i 5-osobowe?

8. Na ile sposobow mozna wybrac trzy liczby sposrod liczb od 1 do 20 tak aby ich suma byla parzysta?

9. Trzy zadania:

1) Ile liczb czterocyfrowych o różnych cyfrach mniejszych od 3000 można utworzyć z cyfr: 1,2,3,4,5?

2)Na ile sposobów można ustawic w szereg 8 mężczyzn i 2 kobiety tak, aby kobiety stały obok siebie?

3)Z grupy w ktorej jest 6 chlopców i 4 dziewczyny wybieramy losowo dwuosobową delegację. Na ile sposobów mozemy to zrobić,aby w skład delegacji weszło:

a)2 chlopców

b)2 dziewczyny

c)chlopiec i dziewczyna

d)co najmniej 1 studentka

10. Ile jest sposobów rozmieszczeń n-rozróżnialnych kul w n-rozróżnialnych komórkach?

11. Z okazji zjazdu koleżeńskiego spotyka się 10 przyjaciół. ile nastąpi powitań?

12. PESEL - dla ilu osób urodzonych tego samego dnia wystarczy numerów?

13. Do windy w ośmiopiętrowym budynku wsiadło 5 osób. Na ile sposobów moga opuścić na różnych piętrach windę?

14.

Zad 1

Ze zbioru cyfr{0,1,3,4,5,6} losujemy kolejno ze zwracaniem dwa razy po jednej cyfrze i zapisujemy je w wylosowanej kolejności jako liczbę dwucyfrowa. Ile w ten sposób możemy otrzymać wszystkich liczb:

a)dwucyfrowych

b)dwucyfrowych podzielnych przez 5

c)dwucyfrowych parzystych

d)dwucyfrowych mniejszych od 45

e)większych od 32

Zad 2 Porządkując na różne sposoby zbiory {1,2,3,4} otrzymujemy za każdym razem pewną liczbę czterocyfrową. Ile możemy w ten sposób otrzymać:

a)różnych liczb

b)różnych liczb parzystych

c)różnych liczb w których cyfra setek jest o jeden większ od cyfry dziesiątek

d)różnych liczb podzielnych przez 3

Zad 3

Ile jest wszystkich liczb dwucyfrowych o różnych cyfrach:

a)podzielnych przez 5

b)parzystych

c)większych od 47

d)większych od 74

e)mniejszych od 53

f)mniejszych od 35

15.

Zad 1

W przedziale wagonu kolejowego są ustawione naprzeciw siebie 2 ławki. Każda ma 5 numerowanych miejsc. Do przedziału weszło 5 osób. 3 osoby usiadły na 1 ławce pozostałe na drugiej, naprzeciwko 2 osób z pierwszej ławki. Ile jest takich rozmieszczeń osób w przedziale???

Zad 2

Każdej z 4 osób przyporzadkowujemy dzień tygodnia w którym sie urodziła. Ile jest możliwych wyników takiego przyporzadkowania jeśli:

a) każda z tych osób mogła urodzić sie w dowolnym dniu tygodnia

b) każda z tych osób urodziła sie w innym dniu tygodnia

16. W sklad rady uczniow wchodzi po dwoch przedstawicieli klas IIa, IIb, IIc, IIIa, IIIb. Na ile sposobow mozna wybrac piecioosobowa delegacje tej rady, jesli przynajmniej jedna klasa ma byc reprezentowana przez dwoch uczniow?

17. Ile k-elementowych ciągów niemalejących da się utworzyć z elementów zbioru n-elementowego?

18.

Zad 1

Ze zbioru {1,2,3,4,5,6,7,8,9} losujemy kolejno bez zwracania trzy liczby, a następnie układamy je w kolejności losowania w liczbę trzycyfrową. Ile można w ten sposób utworzyć:

a)dowolnych liczb

b)liczb parzystych

c)liczb mniejszych od 780

Zad 2

Ze zbioru {0,1,2,3,4,5,6,7,8,9} losujemycztery liczby bez zwracania, a następnie układamy je w kolejności losowania w liczbę czterocyfrową. Ile można otrzymać w ten sposób:

a)dowolnych liczb

b)liczb podzielnych przez 25

c)liczb większych od 5238

19. Z cyfr: 2, 3, 4, 5, 7 układamy liczby 5-cio cyfrowe o różnych cyfrach. Ile można ułożyć takich liczb które:

a) są podzielne przez 3,

b) są podzielne przez 9,

c) s� podzielne przez 4.

20. Dana jest szachownica n x n (n>=2) Na czarno pomalowano 2n pól. Wykazać ze istnieje równoległobok o wierzchołkach w czarnych polach.

21. Na ile sposobow mozna wybrac trzy liczby sposrod liczb od 1 do 10 tak aby ich suma wynosiła 11?

22. W pudełko ułożono 2004 pustych pudełek, z kolei, w niektórych z tych 2004 pudełek ułożono kolejnych 2004 pudełek (oczywiście mniejszych). Wkładanie tych pudełek kontynuowano przez pewien czas. Obliczyć, ile zostało pustych pudełek, jeśli wiadomo, że pudełek zawierających inne pudełka jest 2004.

23. Czy szachownicę o wymiarach 8 x 8, z której usunięto dwa przeciwległe rogi można pokryć kostkami domina tak, że każda kostka musi leżeć na dwóch kwadratach, a dwie kostki nie mog� na siebie zachodzić?

24. W parti 40 monitorow 4 sa popsute. Wybieramy 3 monitory. Na ile sposobow mozna dokonac takiego wyboru aby zaden z monitorow nie byl uszkodzony?

25. Ile różnych dzielników ma liczba 7*8*9*10*11*12?

26. Dwunastu uczniów - czworo dziewcząt i ośmiu chłopców - zajmuje wspólny dwunastomiejscowy rząd w kinie. Wszystkie dziewczęta oraz wszyscy chłopcy siedzą obok siebie. Na ile sposobów mogą oni zająć miejsca?

27. Na festyn przyszly 2002 osoby. W kazdej grupie skladajcej sie z 1001 osob jest taka sama liczba par osob N>0, ktore sie znaja (jesli A zna B, to B zna A). Ile co najmniej par znajomych jest wsrod tych 2002 osob?

28. Liczby 0.1.2.3.4.5.6. ustawimy losowo w ciąg i potraktujmy go jako liczbę 7-cyfrową (której pierwsza cyfra nie może być 0). Ile jest możliwych takich ustawień, w których otrzymamy liczbe 7-cyfrową:

a) dowolną

b) podzielną przez 4

29. Ze zbioru liczb {1,2,3,4,...,11} losujemy jednocześnie trzy. Ile jest możliwych wyników losowania, tak aby iloczyn wylosowanych liczb był nieparzysty?

30. Rozwiązać równanie:

{n\choose 2} - {n\choose 1} = 9

31.

Zad 1

W pewnej populacji jest 20% blondynów. Do sali weszły trzy osoby. Jakie jest prawdopodobieństwo, że żadna z nich nie jest blondynem?

Zad 2

Oszacowano, że w pewnej partii żarówek jest 3,5% braków. Wylosowano 100 żarówek z tej partii. Jakie jest prawdopodobieństwo, że co najmniej 1 ale co najwyżej 7 będą brakami?

32. W kolejce do kina stoi n osób. Osoby te sa wpuszczane do kina w k grupach, z których kazda grupa składa się z conajmniej 1 osoby. Na ile sposobów można utworzyć tych k grup?

33. Dane są dwa zbiory liczbowe: k-elementowy zbiór A i n-elementowy zbiór B, przy czym 1 < k <=n. Ile jest różnowartościowych i niemonotonicznych funkcji f : A->B

34. Na ile sposobów można posadzić przy okrągłym stole n-osób?

35. Jest siedem ponumerowanych kul, które umieszczamy w czterech pojemnikach. Ile jest różnych sposobów rozmieszczenia kul, jeśli wiadomo, że w każdym z pojemników zmieści się siedem kul?

36.

Zad 1

W szufladzie są cztery różne pary rękawiczek. Oblicz prawdopodobieństwo, że wybierając losowo dwie rękawiczki, nie otrzymamy rękawiczek z tej samej pary .

Zad 2

Sześć osób: dwie panie i czterech panów kupiło bilety na pociąg Inter City do tego samego sześcioosobowego przedziału. Numery miejsc były przydzielone w sposób losowy. Oblicz prawdopodobieństwo, że obie panie będą siedziały przy oknie.

37.

Zad 1

Oblicz na ile sposobów można rozmieścić 10 jednakowych kul w 5 szufladach tak, aby w każdej była inna liczba kul?

Zad 2

Po jednej stronie pewnej alei parkowej wykopano 10 dołków: Ile jest różnych sposobów posadzenia 5 lip, 3 kasztanowców i 2 dębów wzdłuż tej alei, jeśli pierwszym i ostatnim drzewem ma być lipa?

38. Ile jest trzycyfrowych liczb mniejszych od 555 o cyfrach ze zbioru {1, 2, 3, ...,9}?

39. Oblicz liczbę elementów pewnego zbioru skończonego wiedząc, że ma on 79 podzbiorów co najwyżej dwuelementowych.

40. Udowodnić, że we Wrocławiu są 2 osoby mające dokładnie tyle samo włosów. Ile ludzi musiałoby mieszkać we Wrocławiu, żeby można było twierdzić, że z pewnością są 3 osoby o tej samej ilości włosów. (Przyjąć, że max. ilość włosów u człowieka wynosi 300 tys.)

41. W przyszłym tygodniu planujesz lekturę 6 tomów "Trylogii" Sienkiewicza i 7 tomów "W poszukiwaniu straconego czasu" Prousta. Po kazdym tomie mozesz kontynuowac lekturę, albo sięgnąc do kolejnego tomu drugiej z tych książek. Na ile sposobów mozesz ustawic kolejnosc lektur??

42. Na ile sposobów można ustawic litery a,b,c,d,e,f w takiej kolejności, by litery a i b nie sąsiadowały ze sobą?

43.
Zad.1 Kod może mieć 5 znaków. Na kod składa sie 10 cyfr i 24 liter. 1 i 2 znak składają się z liter, ale nie tych samych, 3,4 z liter i cyfr, ale jeżeli 3 jest literż, czwórka nie może byc identyczna, 5 znak to dowolna litera.
Zad.2 Ile różnych nazw składających się z 4 znaków można utworzyć z 10 cyfr arabskich i 26 liter alfabetu łacińskiego, jeśli nazwa musi się zaczynać cyfrą nieparzystą i konczyć literą?

44. Posłowie koalicji partii A i partii B siedzą w Sejmie w tym samym dwudziestotrzymiejscowym rzędzie. Jest 10 posłów należących do A i 13 należących do B. Posłowie z A nie mogą siedzieć obok siebie (bo by się naradzali), co wolno posłom z B. Na ile sposobów posłowie mogą zająć miejsca?
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 numer rejestracyjny, książki i zbiór liczb
Błagam o pomoc w rozwiązaniu zadań zaliczeniowych! 1. Mamy 12 książek, wśród których są książki A,B i C. Wkładamy je do trzech pudełek , do każdego po 4 książki (kol...
 blingdazzle  1
 kombinatoryka, grafy - zadania
Witam, proszę o pomoc w rozwiązaniu paru zadań: 1) Mamy p kul białych i q kul czarnych, wkładamy je jedna za drugą. Ile jest sposobów takiego ułożenia jeżeli dwie kule czarne nie mogę leżeć obok siebie? 2) Należy zorganizować plan kontaktów w siadc...
 gelusia  3
 grafy i kombinatoryka
Prosiłbym o pomoc w rozwiązaniu 4 zadanek. Niedługo maturka, a tutaj takie coś dostajemy... 1-2 są proste, ale chciałem się też upewnić. Oto one: ZAD. 1 a) Z grupy 2n osobowej, złożonej z n mężczyzn i n kobiet, chcemy wybrać podzbiór przy jednym ty...
 liceusik  2
 Zestaw zadań z kombinatoryki podstawowej
1. W galerii przygotowywana jest wystawa malarstwa olejnego. Na jednej ze ścian należy zawiesić w jednym rzędzie 8 obrazów. Oblicz, na ile sposobów można to zrobić, jeśli dwa największe płótna: a) mają być umieszczone na początku i na końcu ściany, b...
 Delkadi  1
 Zbior wszystkich mozliwych wynikow wyborow
Witam, Jestem tutaj po raz pierwszy. Usiluje znalezc rozwiazanie nastepujacego zadania: Jest 20 wyborcow, ktorzy moga glosowac lub wstrzymac sie od glosowania. Jesli glosuja, moga oddac swoje glosy na 4 kandydatow: a,b,c,d. Nie moga oddac pustej kart...
 bezliku  5
 pętla i kilka zadan
zad 1 wezmy petle dopoki j>=nwyoknuj i:=i+2 j:=j+1 gdzie i i j sa liczbami ca...
 rohrl  1
 Ile można wariacia/kombinatoryka
7.20 Ile liczb mozna utworzyć pieciocyfrowych o różnych cyfrach należących do zbioru {0,1,2,3,4,5,6,7,8,9} a) podzielnych przez 5 b) podzielnych przez 4 c) większych od 6000 Odp? a)5712 b)6720 c)12096...
 Acura_100  6
 kombinatoryka - zadanie 3
ile prostokatów można wyznaczyć w kwadracie 5x5 zbudowanym z elementarnych kwadratów 1x1 ??...
 mfk  3
 Dwumiany i kombinatoryka.
a) Podpowiedź: skorzystaj z wzoru na dwumian Newtona: najpierw ustal jaki musi być n, żeby potęga x wyszła 3. n będzie numerem współczynnika, potem skorzystaj z symbolu Newtona w wiadomy sposób:) b) Tym razem musisz rozpisać i najpierw wyznaczyć n. ...
 Pusiux  3
 Liczba liczb 5-cyfrowych, zbiór cyfr, różne moce
Chyba nie rozumiem. Czy na pewno powinienem wybierać zbiory, a nie tzw. multizbiory (tj. zbiory z powtórzeniami)? Nie ważne czy mam rację, czy nie, policzenie tych (multi)zbiorów już jest dla mnie problemem (na pewno nie będzie to coś w stylu [tex:27...
 patry93  3
 Dowody, zbior funkcji
Jeśli |X|=k i |Y|=n, to: 1)Liczba funkcji f:X \rightarrow Y jest równa n^k 2)liczba funkcji różnowartościowych f:X \righ...
 myszka9  0
 Kombinatoryka i elem. rach. prawd.
Rzucamy trzema różnymi kostkami. Ile jest wszystkich wyników, ile z nich daje sumę oczek równą 8, ile 9, a ile 10? Proszę o pomoc...
 maciekg  3
 Kombinatoryka - krzesła
Na ile sposobów można usadzić 6 osób na 9 krzesłach w jednym rzędzie...
 na07  3
 Jaś i Staś - kombinatoryka.
Witam. Mam takie zadanie (i kilka podobnych, ale jak póki co skupmy się na tym): Jaś i Staś mają po 20 znaczków. Mogą się wymieniać pewną ilością znaczków (od 0 do 20), ale tak by każdy po wymianie nadal miał 20 znaczków. Na ile sposobów mogą to zrob...
 matolek1993  1
 kombinatoryka - urny.
Mam zadanie dotyczace prawdopodobienstwa, jednak chcialbym uzyskac pomoc (wlasciwie to upewnic sie) w sprawie elementów kombinatoryki, mianowicie: Rozmiescic 10 roznych kul w trzech roznych urnach tak aby choc jedna pozostala pusta. Mój tok myslenia ...
 K.Inc.  6
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com