szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 11 gru 2007, o 21:31 
Użytkownik

Posty: 15
Lokalizacja: Wrocław
Wiadomo że w metryce Euklidesowej zbiór Z jest zwarty wtedy i tylko wtedy gdy jest ograniczony i domknięty.
Istnieją też ładne definicje zbioru domkniętego i ograniczonego, jednak mam zawsze problemy ze zrozumieniem jak się sprawdza zwartość, korzystając z powyższego faktu.

Np. Zbadaj, czy zbiór \lbrace (x,y) \in R^{2}: x^{10} + y^{10} + xy = 1 \rbrace jest zwarty.

Zatem musimy zbadać, czy jest on domknięty i ograniczony.

Jeśli ktoś umie, niech mi ładnie krok po kroku wytłumaczy jak to zrobić. Dzięki.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 11:58 
Użytkownik

Posty: 110
Lokalizacja: Limanowa / Gliwice
Ten zbiór to krzywa zapisana w postaci uwikłanej... możesz np narysować jej wykres i zobaczysz że jest to krzywa zamknięta (przypomina trochę równoległobok)... jest ona zbiorem zwartym. Dlaczego? Domknięta - bo jej dopełnienie w \mathbb{R} jest zbiorem otwartym. Ograniczona - bo ani x ani y nie przyjmują wartości w nieskończoności.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 13:16 
Użytkownik

Posty: 577
Lokalizacja: Łódź
BartekPwl napisał(a):
Domknięta - bo jej dopełnienie w \mathbb{R} jest zbiorem otwartym. Ograniczona - bo ani x ani y nie przyjmują wartości w nieskończoności.


??? Dlaczego dopełnienie w \mathbb{R}? Co to znaczy "ani x ani y nie przyjmują wartości w nieskończoności." ???

Ja bym robił tak:
Domkniętość: Funkcja f:\mathbb R^2\to\mathbb R dana wzorem f(x,y)=x^{10}+y^{10}+xy jest funkcją ciągłą, a więc zbiór
\{(x,y)\in\mathbb R^2:x^{10}+y^{10}+xy=1\}=f^{-1}(\{1\})
jest zbiorem domkniętym jako przeciwobraz zbioru domkniętego {1} pod działaniem funkcji ciągłej f.

Ograniczoność: Pokażemy, że dla każdego elementu (x,y) naszego zbioru mamy |x|\leqslant2 oraz |y|\leqslant2
Istotnie, gdybyśmy mieli |x|>2 oraz |y|>2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^2(|x|^8-1)+|y|^2(|y|^8-1)>4\cdot255+4\cdot255>1
czyli mamy sprzeczność
Gdybyśmy mieli |x|>2 oraz |y|\leqslant2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^2(|x|^8-1)+|y|^{10}-|y|^2>4\cdot255+0-4>1
znowu sprzeczność
Gdybyśmy wreszcie mieli |x|\leqslant2 oraz |y|>2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^{10}-|x|^2+|y|^2(|y|^8-1)>0-4+4\cdot255>1
Jeszcze raz sprzeczność. Wynika stąd, że |x|\leqslant2 oraz |y|\leqslant2, czyli nasz zbiór jest ograniczony.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 15:45 
Użytkownik

Posty: 4376
Lokalizacja: Kraków
W kwestii ograniczonosci mozna podac alternatywna forme rozw, tj bez koniecznosci rozpatrywania przypadków, zapis w formie ponizszej , swiadczy iz ze wzgledu na nature , -tj wsp przy najwyzszych potegach w wielomianach w i v nie jest mozliwe, aby dla dowolnie duzych x i y było w(x)
w(x)-v(y)= (x^{10}-\frac{1}{4}x^2)-(1+y^2-y^{10})=-(\frac{1}{2}x+y)^2 \leq 0
:arrow: :arrow:
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 14 gru 2007, o 15:48 
Użytkownik

Posty: 15
Lokalizacja: Wrocław
Dzięki, ale mam jeszcze jedno pytanko:

Cytuj:
... jest zbiorem domkniętym jako przeciwobraz zbioru domkniętego {1} pod działaniem funkcji ciągłej f.


To że {1} jest zbiorem domkniętym to kumam, ale dlaczego przeciwobraz przez funkcję ciągłą zbioru domkniętego jest domknięty? Jakoś tego nie widzę.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 16 gru 2007, o 00:38 
Użytkownik

Posty: 4376
Lokalizacja: Kraków
no taka jest definicja i juz :arrow:
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 zbiór zwarty - zadanie 4
Pokazać, że jeśli X jest lokalnie zwartą przestrzenią typu T_{2}, A zwartym podzbiorem przestrzeni X, a U zbiorem otwartym zawierającym A, to istnieje zbiór zwarty B taki, że A \subset int(B) \subset...
 adam1255  1
 zbiór zwarty - zadanie 2
w jaki sposób wykazać, że kula K_r^n(0)=\{p\in\mathbb{R}^n|<p,p>\leq r^2\} gdzie < , > jest iloczynem skalarnym wektorów zaś r jest normą Eukli...
 inesitka  6
 Zbiór zwarty - zadanie 3
Sprawdź, czy jest ograniczony i domknięty, a potem powołaj się na twierdzenie Heinego-Borela....
 miauczykotek  2
 Zbiór liczb niewymiernych nie przeliczalny?
Proszę pokazać że zbiór liczb niewymiernych jest nieprzeliczalny....
 pc  1
 Narysować zbiór - zadanie 4
A=...
 rolnik41  5
 Udowodnić, że zbiór jest liniowo uporządkowany
Spróbuj nie wprost. JK...
 nevermore  1
 Wyznacz zbiór - zadanie 13
X \in R: log _{ \frac{1}{3} } (x ^{2} - 1) > -1...
 Igorx  3
 Zbiór wszystkich zbiorów
Dobre jak każde inne. Potraktuj to jako pytanie formalne. Oznacza to, że zbiór jest swoim elementem. Taka sytuacja normalnie w życiu matematyka nie występuje, stąd Twój opór. Ale można takie sytuacje badać: ...
 leszczu450  42
 Zbiór dwuelementowy z parametrem p.
Niech A={x ε R: x � +px+25=0}. Dla jakich wartości parametru p zbiór A jest dwuelementowy?...
 lukaszw1987  1
 czy to jest zbiór pusty?
x ^{2}+x+1=0 dzięki z góry za pomoc jeśli nie to iluelementowy?...
 groupies  1
 WW na zbiór pusty
Proszę o pomoc! Podać warunek wystarczający żeby \cup (P(\cap X)) był pusty, gdzie: P - zbiór wszystkich podzbiorów, X ...
 elektr0n  0
 Czy każdy zbiór ograniczony ma kres?
Jeśli mam zbiór A \subset R i jest to zbiór ograniczony z góry, to znaczy, że ten zbiór ma kres górny? Albo inaczej, czy każdy zbiór ograniczony z góry, będzie miał kres górny?...
 p_bolger  4
 wyznacz zbior - zadanie 25
\left \Delta X = \left. Jak obliczyć X?...
 szaraa  1
 Bijekcja ze zbioru podziału na zbior relacji r. zbioru A
jak?...
 Matiks21  7
 Pokazać, że zbiór ma moc alef zero
Dowieść, że zbiór \{x \in \mathbb{R}:\bigvee\limits_{n\in \mathbb{N}-\{0\}}x ^{n} \in \mathbb{Q\}} ma moc \aleph_0....
 act  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com