szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 11 gru 2007, o 22:31 
Użytkownik

Posty: 15
Lokalizacja: Wrocław
Wiadomo że w metryce Euklidesowej zbiór Z jest zwarty wtedy i tylko wtedy gdy jest ograniczony i domknięty.
Istnieją też ładne definicje zbioru domkniętego i ograniczonego, jednak mam zawsze problemy ze zrozumieniem jak się sprawdza zwartość, korzystając z powyższego faktu.

Np. Zbadaj, czy zbiór \lbrace (x,y) \in R^{2}: x^{10} + y^{10} + xy = 1 \rbrace jest zwarty.

Zatem musimy zbadać, czy jest on domknięty i ograniczony.

Jeśli ktoś umie, niech mi ładnie krok po kroku wytłumaczy jak to zrobić. Dzięki.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 12:58 
Użytkownik

Posty: 110
Lokalizacja: Limanowa / Gliwice
Ten zbiór to krzywa zapisana w postaci uwikłanej... możesz np narysować jej wykres i zobaczysz że jest to krzywa zamknięta (przypomina trochę równoległobok)... jest ona zbiorem zwartym. Dlaczego? Domknięta - bo jej dopełnienie w \mathbb{R} jest zbiorem otwartym. Ograniczona - bo ani x ani y nie przyjmują wartości w nieskończoności.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 14:16 
Użytkownik

Posty: 577
Lokalizacja: Łódź
BartekPwl napisał(a):
Domknięta - bo jej dopełnienie w \mathbb{R} jest zbiorem otwartym. Ograniczona - bo ani x ani y nie przyjmują wartości w nieskończoności.


??? Dlaczego dopełnienie w \mathbb{R}? Co to znaczy "ani x ani y nie przyjmują wartości w nieskończoności." ???

Ja bym robił tak:
Domkniętość: Funkcja f:\mathbb R^2\to\mathbb R dana wzorem f(x,y)=x^{10}+y^{10}+xy jest funkcją ciągłą, a więc zbiór
\{(x,y)\in\mathbb R^2:x^{10}+y^{10}+xy=1\}=f^{-1}(\{1\})
jest zbiorem domkniętym jako przeciwobraz zbioru domkniętego {1} pod działaniem funkcji ciągłej f.

Ograniczoność: Pokażemy, że dla każdego elementu (x,y) naszego zbioru mamy |x|\leqslant2 oraz |y|\leqslant2
Istotnie, gdybyśmy mieli |x|>2 oraz |y|>2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^2(|x|^8-1)+|y|^2(|y|^8-1)>4\cdot255+4\cdot255>1
czyli mamy sprzeczność
Gdybyśmy mieli |x|>2 oraz |y|\leqslant2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^2(|x|^8-1)+|y|^{10}-|y|^2>4\cdot255+0-4>1
znowu sprzeczność
Gdybyśmy wreszcie mieli |x|\leqslant2 oraz |y|>2 to byłoby
1=x^{10}+y^{10}+xy\geqslant|x|^{10}+|y|^{10}-2|x||y|=\\
=|x|^{10}+|y|^{10}-|x|^2-|y|^2+(|x|-|y|)^2\geqslant\\
\geqslant|x|^{10}-|x|^2+|y|^2(|y|^8-1)>0-4+4\cdot255>1
Jeszcze raz sprzeczność. Wynika stąd, że |x|\leqslant2 oraz |y|\leqslant2, czyli nasz zbiór jest ograniczony.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 12 gru 2007, o 16:45 
Użytkownik

Posty: 4346
Lokalizacja: Kraków
W kwestii ograniczonosci mozna podac alternatywna forme rozw, tj bez koniecznosci rozpatrywania przypadków, zapis w formie ponizszej , swiadczy iz ze wzgledu na nature , -tj wsp przy najwyzszych potegach w wielomianach w i v nie jest mozliwe, aby dla dowolnie duzych x i y było w(x)
w(x)-v(y)= (x^{10}-\frac{1}{4}x^2)-(1+y^2-y^{10})=-(\frac{1}{2}x+y)^2 \leq 0
:arrow: :arrow:
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 14 gru 2007, o 16:48 
Użytkownik

Posty: 15
Lokalizacja: Wrocław
Dzięki, ale mam jeszcze jedno pytanko:

Cytuj:
... jest zbiorem domkniętym jako przeciwobraz zbioru domkniętego {1} pod działaniem funkcji ciągłej f.


To że {1} jest zbiorem domkniętym to kumam, ale dlaczego przeciwobraz przez funkcję ciągłą zbioru domkniętego jest domknięty? Jakoś tego nie widzę.
Góra
Mężczyzna Offline
 Tytuł: Zbiór zwarty
PostNapisane: 16 gru 2007, o 01:38 
Użytkownik

Posty: 4346
Lokalizacja: Kraków
no taka jest definicja i juz :arrow:
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 zbiór zwarty - zadanie 4
Pokazać, że jeśli X jest lokalnie zwartą przestrzenią typu T_{2}, A zwartym podzbiorem przestrzeni X, a U zbiorem otwartym zawierającym A, to istnieje zbiór zwarty B taki, że A \subset int(B) \subset...
 adam1255  1
 zbiór zwarty - zadanie 2
w jaki sposób wykazać, że kula K_r^n(0)=\{p\in\mathbb{R}^n|<p,p>\leq r^2\} gdzie < , > jest iloczynem skalarnym wektorów zaś r jest normą Eukli...
 inesitka  6
 Zbiór zwarty - zadanie 3
Sprawdź, czy jest ograniczony i domknięty, a potem powołaj się na twierdzenie Heinego-Borela....
 miauczykotek  2
 Wyznacz zbiór - zadanie 12
Witam, Mam takie dwa zadania: 1. Niech B _{n}= \left dla n \in N \backslash \{0\}. Wyznacz zbiór \bigcap_{m=1}^...
 _madame_  3
 zbiór wartosci - zadanie 4
wyznacz na osi liczbowej zbiór wartosci wszytskich punktów , których suma odległosci od punktów 1 i 3 jest mnijesza od 6...
 angel_89-17  1
 Zbadać czy podany zbiór jest ograniczony
Zbadać czy podany zbiór jest ograniczony B=\left\{ x \in R : tgx = 7\right\} Pomoże ktoś? ...
 aleP  1
 Relacja równoważności, klasa abstrakcji i zbiór ilorazowy
Czy poniższe zadanie jest dobrze zrobione? n,m \in \mathbb{N} n \approx m \Leftrightarrow 3|\left( n^{3}-m^{3}\right) Czy podana relacja jest relacją równoważności? TAK[...
 fuss77  5
 Zbiór liczb całkowitych dodatnich
Czy liczba zero wchodzi w skład liczb całkowitych dodatnich?...
 Bartek1991  8
 Zbior potegowy
Dla danego zbioru X= \{a,\phi, \{a, b\} \} wyznacz zbiór potęgowy....
 marian04  1
 zbiór przeliczalny..
Wykaż że zbiór słabo malejących funkcji f: \mathbb{N} \rightarrow \mathbb{N} jest przeliczalny. (funkcja f: \mathbb{N} \rightarrow \mathbb{N} jest słabo malejąca, jeśli x>y ...
 raphel  5
 zbiór stacjonarny
Niech C będzie zbiorem normalnym (nieograniczonym i domkniętym), Niech S będzie podzbiorem C. Jeśli S nie jest zbiorem stacjonarnym (czyli istnieje przynajmniej jeden zbiór normalny P rozłączny z S) to ....z jakiego powodu C\S jest zbiorem stacjonar...
 wiosna  1
 miara Lebesque'a, zbiór Cantora
skonstruowac na prostej liczbowej |R zbiór nieprzeliczalny i miara Lebesque'a bedzie równa 0. wiem tylko tyle ze to tego zadania zbior Cantora ma wymagane wlasnosci ale co dalej... prosze bardzo o pomoc...
 sylwia1983  1
 Zbiór liczb niewymiernych nie przeliczalny?
Proszę pokazać że zbiór liczb niewymiernych jest nieprzeliczalny....
 pc  1
 Wyznacz zbiór - zadanie 3
Wyznacz zbiór wszystkich punktów osi liczbowej, których suma odległości od punktów 1 oraz 3 jest mniejsza od 6. Pozdrawiam...
 kosmas  1
 Stożek generowany przez zbiór
Przede wszystkim chciałam się przywitać - to pierwszy mój post na tym forum. Teraz przejde do rzeczy. Moze ktoś mi przedstawić schemat rozwiązywania takiego oto zadania: Dany jest zbiór M: x_1 - 2x_2 ...
 magda_m  0
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com