szukanie zaawansowane
 [ Posty: 13 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 18 wrz 2008, o 18:56 
Użytkownik

Posty: 2
Lokalizacja: krynica
Witam
Mam prośbe jak obliczyć pierwiastek trzeciego stopni z za pomoca wyrazien tak zwany z0,z2,z3...

\sqrt[3]{i}

wzór znam ale jak dojsc do tego..?

Prosze o pomoc jak to mozliwe dzis.. Bardzo mi na tym zależy...

Bardzo was prosze

dokładnie mi chodzi o kad phi jak go poprawnie odczytac.

A najlepiej jak to zrobic od poczatku bo mi cos dzwoni ale nie wiem czy dobrze.
Góra
Mężczyzna Offline
PostNapisane: 18 wrz 2008, o 20:14 
Użytkownik

Posty: 6607
Mamy znalezc wiec cos takiego:
z^3=i\\

Teraz prawa strone zamieniamy na postac trygonometryczna, tj:
z^3=\cos \frac{\pi}{2}+i\sin \frac{\pi}{2}\\

I korzystamy ze wzoru Demoivra:
z_k=\cos \frac{\frac{\pi}{2}+2k\pi}{3}+i\sin  \frac{\frac{\pi}{2}+2k\pi}{3}\ \ \ k\in\{0,1,2\}

Podstawiamy i mamy trzy pierwiastki :) Pozdrawiam.
Góra
Mężczyzna Offline
PostNapisane: 18 wrz 2008, o 20:28 
Użytkownik

Posty: 2
Lokalizacja: krynica
a mozna prosić o przykład obliczonego z1 ?? bardzo bym prosił .. z ewentualnym wytlumaczeniem dla jelenia takiego jak ja ...

Bo w nastepnych zmienia sie liczbe k i dalej odczytuje wartosci z pewnego kola.. a jak sie ono nazywa to nie wiem.

nie wiem czy to dobrze robie ale w zo ma wyjsc 2/3 \prod_{}^{}

Albo prosze o same odp ..moze dojde
Góra
Mężczyzna Offline
PostNapisane: 18 wrz 2008, o 22:56 
Użytkownik

Posty: 6607
No ok:
z_1=\cos \frac{\frac{\pi}{2}+2\pi}{3}+i\sin \frac{\frac{\pi}{2}+2\pi}{3}=
\cos \frac{\frac{5\pi}{2}}{3}+i\sin \frac{\frac{5\pi}{2}}{3}=
\cos \frac{5\pi}{6}+i\sin \frac{5\pi}{6}=
\cos \left(\pi-\frac{\pi}{6}\right)+i\sin \left(\pi-\frac{\pi}{6}\right)=
-\cos \frac{\pi}{6}+i\sin \frac{\pi}{6}=
-\frac{\sqrt{3}}{2}+i\frac{1}{2}

Pozostale dwa pierwiastki (z_0,\; z_1) analogicznie ;] Pozdrawiam.
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 22:20 
Użytkownik

Posty: 5
Lokalizacja: Bytom
soku11 napisał(a):
Mamy znalezc wiec cos takiego:
z^3=i\\

Teraz prawa strone zamieniamy na postac trygonometryczna, tj:
z^3=\cos \frac{\pi}{2}+i\sin \frac{\pi}{2}\\


Czy mógłby ktoś napisać w jaki sposób zamienić to na postać trygonometryczną?
Dzięki
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 22:28 
Użytkownik

Posty: 111
Lokalizacja: Podlaskie
liczbę a+bi zmieniasz tak
a+bi=(a^2+b^2)\left(\frac{a}{a^2+b^2}+\frac{b}{a^2+b^2} i\right)

\cos \alpha= \frac{a}{a^2+b^2}

\sin \alpha =\frac{b}{a^2+b^2}

gdy z=i, to a=0 b=1 i masz


\cos \alpha= 0

\sin \alpha =1

stąd wniosek, że \alpha =\frac{\pi}{2}

chociaż tutaj szybciej widać z położenia i na płaszczyźniej Gausa
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 22:29 
Użytkownik

Posty: 1180
Lokalizacja: Warszawa
z^3=0+i=\sqrt{0^2+1^2}(0+i)=\cos\theta+i\sin\theta

W takim razie
\begin{cases} \cos\theta=1\\
\sin\theta=0 \\ \end{cases}

czyli \textup{Arg}(i)=\frac\pi2.
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 22:39 
Użytkownik

Posty: 5
Lokalizacja: Bytom
Forte napisał(a):
\cos \alpha= 0

\sin \alpha =1

stąd wniosek, że \alpha =\frac{\pi}{2}


Pewnie głupie pytanko, ale skąd taki wniosek ? :roll:
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 22:48 
Użytkownik

Posty: 1180
Lokalizacja: Warszawa
Ogólny wniosek (ze szkolnej trygonometrii) jest taki, że \ctg\alpha=0, a więc \alpha=\frac\pi2+k\pi, gdzie k\in\mathbb{Z}, ale najprościej jest w kontekście wziąć "najprostsze" \alpha (tzw. argument główny) i stąd \frac\pi2.
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 23:05 
Użytkownik

Posty: 5
Lokalizacja: Bytom
Dalej nie ogarniam :( Kolejny przykład

\cos \alpha=  \frac{\sqrt{2}}{2}

\sin \alpha = - \frac{\sqrt{2}}{2}

stąd wniosek, że \alpha =\frac{3}{2} \pi + \frac{\pi}{4}
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2012, o 23:33 
Użytkownik

Posty: 1180
Lokalizacja: Warszawa
Zgadza się, można też przyjąć \alpha=-\frac\pi4. Co do nierozumienia, to nie wiem, co można by jeszcze powiedzieć. To jest dość elementarna szkolna trygonometria, nic więcej.
Góra
Mężczyzna Offline
PostNapisane: 31 maja 2012, o 00:01 
Użytkownik

Posty: 5
Lokalizacja: Bytom
Majeskas napisał(a):
Zgadza się, można też przyjąć \alpha=-\frac\pi4. Co do nierozumienia, to nie wiem, co można by jeszcze powiedzieć. To jest dość elementarna szkolna trygonometria, nic więcej.


Dzięki wielkie :) Tym \alpha=-\frac\pi4 troche mi się rozjaśniło. 4-ćwiartka 45 stopni.
Chyba już wiadomo o co chodzi, po prostu nie skojarzyłem ;)

Pozdrawiam!
Góra
Mężczyzna Offline
PostNapisane: 31 maja 2012, o 09:09 
Użytkownik

Posty: 111
Lokalizacja: Podlaskie
w takim razie pomocne tobie będą wykresy \sin x i \cos x poszukaj w google
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 13 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Obliczyć pierwiastek - zadanie 6
\sqrt{ \left( \frac{1+i}{ \sqrt{2} } \right) ^{26} \cdot \frac{1-i}{1+i} } Pierwszy mój problem tutaj to obliczenie modułu. Na ćwiczeniach mieliśmy tak: |z|= \sqrt{ \left( \frac{1}{ \...
 razelll  3
 pierwiastek z liczby zespolonej - zadanie 23
Skad to się wzięło??????????...
 KaSia222  11
 pierwiastek 4 stopnia - zadanie 2
Jak wyliczyć \sqrt{-4} ? Siedzę nad tym i nie mogę wykombinować ...
 belczek  1
 Oblicz pierwiastek - zadanie 15
Witam Robie zadanka z zespolonych i nie wiem czy dobrze robie ten przykład: Oblicz: \sqrt{-1} Wychodzi mi, że w jednym wyjdzie ką...
 swyder  7
 Policzyć pierwiastek czwartego stopnia.
Zadanie wygląda tak: z^{4} = (3 - i)^{8} I na razie doszedłem do tego, że trzeba policzyć moduł z (3 - i)^{8}, który wynosi 10.000. I kompletnie ...
 Pendulum  2
 pierwiastek 3. stopnia z liczby zespolonej
\sqrt{ \frac{1-5i}{1+i} -5 \frac{1+2i}{2-i}+2 } ile wynosi \varphi oraz \left| z\right|?...
 Ugonio  3
 Pierwiastek z -1
Pierwiastek z -1 Wszystkich tych, którzy patrząc na ten temat postukali się w głowę, od razu uspokajam- nie mam zielonego (ani żadnego innego ;) pojęciao co w tym chodzi. Ja matematyki nie teges, dlatego tu jestem. Gdyby ktok...
 Anonymous  2
 Znaleźć pierwiaski 4 stopnia
W liczniku wychodzi -8i, a w mianowniku dochodzę to tego: 2^{5}( \frac{\sqrt3}{2}+ \frac{1}{2}i ). Nie wiem czy potem dobrze robię, że to jest: 32( \frac{\sqrt3}{2}+...
 Trampek  6
 pierwiastek z liczby zespolonej 2
\sqrt{3+4i} nie moge znalezc argumentu do postaci tryg....
 micsie  8
 obliczyc pierwiastek z i
\sqrt{i}= ??...
 Pakul  3
 Pierwiastek n-tego stopnia z liczby zespolonej.
Cześć. Muszę podać najmniejszą liczbę naturalną n, taka że liczba -i-1 będzie pierwiastkiem n-tego stopnia z liczby -8i. Nie wiem jak się do tego zabrać. Proszę o...
 times  2
 Oblicz pierwiastki drugiego stopnia
Mógłby mi ktoś powiedzieć na przykładzie jak za zadanie tego typu mam się zabrać? Oblicz pierwiastki drugiego stopnia z liczby zespolonej z = i....
 Dartam  3
 znalesc pierwiastek stopnia 4
\sqrt{2-2i} jaki to rozwiazac krok po kroku bo w polowie sie zatrzymuje i nie moge koncowego wyniku uzyskac...
 marezo  1
 Pierwiastek z i
Mam obliczyć pierwiastek z i korzystając z definicji... \sqrt{i}=a+bi \\ i=a^2-b^2+2abi \\ \begin{cases} a^2-b^2=0 \\ 2ab=1 \end{cases} \\ b=\frac{1}{2a} \\ a^2-\frac{1}{4a^2}=0 \\ 4a^4=0 \\ a=0[/tex:1sjybl...
 Kanodelo  2
 pierwiastek liczby zespolonj
hej.dziś na egzaminie miałam zadanie z liczb zespolonych.mialam odliczyć pierwiastek z3 z jakiegoś równania 3 stopnia.na początku chciałam napisać że te równanie nie ma takiego pierwiastka ponieważ ma ono tylko 3 pierwiastki: z0,z1 i z2.ale koleżanka...
 210290magda  6
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com