szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 21:26 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
\sqrt[6]{\frac{1+i}{1-i \sqrt{3}} }

mnożę przez \frac{1+ i\sqrt{3}}{1+ i\sqrt{3}} i otrzymuję algebraiczną postac \frac{1- \sqrt{3}+(1+ \sqrt{3})i}{4}


|z| wynosi \frac{ \sqrt{2}}{2}

i co dalej? cos i sin wychodzą przedziwne...

to mój pierwszy post a więc witam wszystkich i mam nadzieję, ze nie zblaźniłem się na wstępie :D
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Kobieta Offline
PostNapisane: 15 paź 2008, o 22:38 
Użytkownik

Posty: 2277
Lokalizacja: Dąbrowa Górnicza
ja bym jednak poleciła "rozbić " sobie wkońcu \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} powinno znacznie uprościc sprawe.. bo liczysz oba te pierwiastki osobno a wyniki dzielisz przez siebie ;)
Góra
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 22:43 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
rzeczywiście godne polecenia :) dziękuję, zrobię jak tylko się wyśpię :mrgreen:
Góra
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 23:26 
Użytkownik

Posty: 132
Lokalizacja: Hel
ale co dzielić przez sibie jak w każdym wychodzi 6 różnych wyników i teraz bądź tu człowiku mądry?
każdy z każdym czy 0 z 0, 1 z 1?
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 15:51 
Gość Specjalny
Avatar użytkownika

Posty: 3302
Lokalizacja: Skierniewice
Tak z ciekawości sprawdziłem, co to za sinus i cosinusy wyjdą, i są one dość przejmie z tego co widać to mamy
cos= \frac{- \sqrt{6} +  \sqrt{2} }{4} // sin= \frac{ \sqrt{6} +  \sqrt{2} }{4}

chyba że się pomyliłem, ale jeśli tak, to można to zapisać, jakoś tak:

{\frac{1+i}{1-i \sqrt{3}} = (\frac{ \sqrt{2} }{2} )^{6} (cos \frac{5}{12}\pi +isin  \frac{5}{12}\pi)^{6}

Po kombinuj dalej ja nie mam pomysłu, co do tej metody z dzieleniem pierwiastków, to jakoś jej nie łapę, i nie wiem niby dlaczego takie dzielenie byłby prawdziwe.
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 17:07 
Użytkownik

Posty: 6607
z=\sqrt[6]{\frac{1+i}{1-i \sqrt{3}} }\\
z^6=\frac{1+i}{1-i\sqrt{3}}\\
\frac{1+i}{1-i\sqrt{3}}=
\frac{ \sqrt{2}(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}) }{2(\frac{1}{2}-i\frac{\sqrt{3}}{2}}=
\frac{\sqrt{2}}{2}\cdot \frac{\cos \frac{\pi}{4}+i\sin \frac{\pi}{4}}{\cos \frac{5\pi}{3}+i\sin \frac{5\pi}{3}}=
\frac{\sqrt{2}}{2}\left(\cos -\frac{17\pi}{12}+i\sin \frac{-17\pi}{12}\right)\\
z_k=\sqrt[6]{\frac{\sqrt{2}}{2}}\left(
\cos \frac{-\frac{17\pi}{12}+2k\pi}{6}+i\sin\frac{-\frac{17\pi}{12}+2k\pi}{6}
\right)\;\;k\in\{0,1,2,3,4,5\}

Podstawic i masz wszystkie pierwiastki :) Pozdrawiam.
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 23:01 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
Wielkie dzięki! :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Pierwiastek trzeciego stopnia z liczby zespolonej - zadanie 2  mati1717  3
 równanie 3-ciego stopnia  bialy92  3
 Pierwiastek z liczby zespolonej a postać wykładnicza  bolokantak  7
 Obliczenie pierwiastków czwartego stopnia z -81.  Qóba  2
 Pierwiastek z 1 - zadanie 2  cesarks  5
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com