szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 21:26 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
\sqrt[6]{\frac{1+i}{1-i \sqrt{3}} }

mnożę przez \frac{1+ i\sqrt{3}}{1+ i\sqrt{3}} i otrzymuję algebraiczną postac \frac{1- \sqrt{3}+(1+ \sqrt{3})i}{4}


|z| wynosi \frac{ \sqrt{2}}{2}

i co dalej? cos i sin wychodzą przedziwne...

to mój pierwszy post a więc witam wszystkich i mam nadzieję, ze nie zblaźniłem się na wstępie :D
Góra
Kobieta Offline
PostNapisane: 15 paź 2008, o 22:38 
Użytkownik

Posty: 2275
Lokalizacja: Dąbrowa Górnicza
ja bym jednak poleciła "rozbić " sobie wkońcu \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} powinno znacznie uprościc sprawe.. bo liczysz oba te pierwiastki osobno a wyniki dzielisz przez siebie ;)
Góra
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 22:43 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
rzeczywiście godne polecenia :) dziękuję, zrobię jak tylko się wyśpię :mrgreen:
Góra
Mężczyzna Offline
PostNapisane: 15 paź 2008, o 23:26 
Użytkownik

Posty: 132
Lokalizacja: Hel
ale co dzielić przez sibie jak w każdym wychodzi 6 różnych wyników i teraz bądź tu człowiku mądry?
każdy z każdym czy 0 z 0, 1 z 1?
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 15:51 
Gość Specjalny
Avatar użytkownika

Posty: 3302
Lokalizacja: Skierniewice
Tak z ciekawości sprawdziłem, co to za sinus i cosinusy wyjdą, i są one dość przejmie z tego co widać to mamy
cos= \frac{- \sqrt{6} +  \sqrt{2} }{4} // sin= \frac{ \sqrt{6} +  \sqrt{2} }{4}

chyba że się pomyliłem, ale jeśli tak, to można to zapisać, jakoś tak:

{\frac{1+i}{1-i \sqrt{3}} = (\frac{ \sqrt{2} }{2} )^{6} (cos \frac{5}{12}\pi +isin  \frac{5}{12}\pi)^{6}

Po kombinuj dalej ja nie mam pomysłu, co do tej metody z dzieleniem pierwiastków, to jakoś jej nie łapę, i nie wiem niby dlaczego takie dzielenie byłby prawdziwe.
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 17:07 
Użytkownik

Posty: 6607
z=\sqrt[6]{\frac{1+i}{1-i \sqrt{3}} }\\
z^6=\frac{1+i}{1-i\sqrt{3}}\\
\frac{1+i}{1-i\sqrt{3}}=
\frac{ \sqrt{2}(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}) }{2(\frac{1}{2}-i\frac{\sqrt{3}}{2}}=
\frac{\sqrt{2}}{2}\cdot \frac{\cos \frac{\pi}{4}+i\sin \frac{\pi}{4}}{\cos \frac{5\pi}{3}+i\sin \frac{5\pi}{3}}=
\frac{\sqrt{2}}{2}\left(\cos -\frac{17\pi}{12}+i\sin \frac{-17\pi}{12}\right)\\
z_k=\sqrt[6]{\frac{\sqrt{2}}{2}}\left(
\cos \frac{-\frac{17\pi}{12}+2k\pi}{6}+i\sin\frac{-\frac{17\pi}{12}+2k\pi}{6}
\right)\;\;k\in\{0,1,2,3,4,5\}

Podstawic i masz wszystkie pierwiastki :) Pozdrawiam.
Góra
Mężczyzna Offline
PostNapisane: 19 paź 2008, o 23:01 
Użytkownik

Posty: 17
Lokalizacja: Bielsko-Biała
Wielkie dzięki! :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 pierwiastek z liczby zespolonej - zadanie 11
\sqrt{-3 -4i}=z -3 -4i=z ^{2} z=a+bi...
 Hellbike  5
 Obliczyc pierwiastki 4-go stopnia
Zadanko: Oblicz \sqrt{7+24j} kurde zeby to byl pierwiastek kwadratowy to bym zastosowal wzór na cos(x/2) ale tu sie pojawia cos(x/4) jakies pomysly ;>...
 rdkk  3
 Pierwiastek z liczby zespolonej a postać wykładnicza
Problem wygląda następująco: należy rozwiązać równanie z^{6}-3iz^{3}+4=0. Wynik należy przedstawić w postaci trygonometrycznej (chyba mam) i wykładniczej (definitywnie nie mam ...
 bolokantak  7
 moduł, argument główny oraz szósty pierwiastek stopnia 25
\frac{ \sqrt{3}+j }{ \sqrt{2}-j \sqrt{2} } Moduł mi wyszedł 1 a argument \arctan \left( \frac{ \left( \sqrt{6}+ \sqrt{2} \right) ^{2} }{4} \right)[/tex:4h...
 zajer  3
 Pierwiastek drugiego stopnia liczby zespolonej
Witam. Mamy obliczyć taki pierwiastek: \sqrt{6+8i} Moje pytanie dotyczy głównie metody. Można to robić tak: z=x+yi x+yi=\sqrt{6+8i}/()^2 x^2+...
 marek252  4
 Pierwiastek z liczby zespolonej.
Witam. Obliczam pierwiastek liczby zespolonej: z= \sqrt{-3-4i} Zatem x+yi = \sqrt{-3-4i} /podnoszę do kwadratu (x + yi) ^{2} = -3-4i x ^{2} ...
 piotrek6984  2
 Pierwiastek trzeciego stopnia z liczby zespolonej - zadanie 2
Czy rozwiązaniem \sqrt{2-2i} będą takie liczby?: z_{0}=\sqrt{2\sqrt{2}}\left(\cos \frac{7}{12}+i\sin\frac{7}{12}\right), \\ z_{1}=\sqrt{2\sqrt{2}}\left(\cos \frac{15}{12}+i\sin\frac{15}{...
 mati1717  3
 Pierwiastek z liczby zespolonej - zadanie 24
Witam. Chciałbym wyciągnąć pierwiastek z liczby zespolonej 1-8i. Zabieram się do tego tak: \left(a+ib\right)\left(a+ib\right)=1-8i\\\begin{cases}a^2-b^2=1\\2ab=-8\end{cases}\\ab=-4\\a=-\frac...
 kmph  2
 równania 3-go stopnia
oblicz 1). z^{3} + 8i=0 2).z^{3} +z ^{2} +3z +2=0...
 Kamil18  2
 Prawda czy falsz. Pierwiastek z delty = +_i?
Witam, Mam pytanie, czy \sqrt{\Delta } = \pm i. Prawda czy falsz? Prawda jest wtedy gdy liczba pod pierwiastkiem jest ujemna. Ale ta delta do czego sie odnosi?...
 red0x  4
 Oblicz pierwiastek - zadanie 11
\sqrt{-1} Mam do obliczenia taki pierwiastek, korzystam ze wzoru w_{k}=\sqrt{|z|} \left( \cos{ \frac{\varphi+2k\pi}{n}}+i \sin{ \frac{\varphi+2k\pi}{n}} \right) ale już z niego I...
 R33  2
 pierwiastek kwadratowy - zadanie 2
Mając z=a+bi znajdź: \sqrt{z} nie chodzi mi o samo podanie wzorów, tylko również ich wyporwadzenie...
 ślimak  2
 Pierwiastki n stopnia z wielomianu stopnia k
Witajcie mam pytanie do pierwiastka n stopnia jezeli liczba zespolona jest podniesiona do k-tej potegi: Dla przykładu z=(1+i)^{20} i policzyc z tego pierwiastek 3-stopnia Czy aby to policzyc nalezy skorzystac z ...
 magicstyle  2
 Oblicz pierwiastki zespolone stopnia trzeciego z liczby: 1
Zadanie jest proste i rozumiem o co w nim chodzi wiec interesują mnie tyko wyniki:] miałem to na kole wiec chce sie upewnić czy zrobiłem to dobrze. Oblicz pierwiastki zespolone stopnia trzeciego z liczby: 1...
 uncleshoo  2
 równanie 3-ciego stopnia
2z ^{3} i ^{3} = \frac{(i-1) ^{3} }{(i+1)} już któryś raz to próbuję za każdym razem inaczej i nijak nie mogę dojść do wyniku z wolframu: "http://www.wolframalpha.com/input/?i=2z^3i^3%3D%28%28i-1%29...
 bialy92  3
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com