szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 00:47 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
Witam mam problem z rozwiązaniem kliku zadań na potęgach. Jeśli ktoś mógłby napisać jak je zrobić byłbym bardzo wdzięczny.

Zad 1.
Oblicz:

\frac {(1024 - 2^{7}) - 343}{2^{7} * 7^{5}}

\frac {(5^{20} + 5^{18}) * (3^{4})^{3}}{(5^{16} + 5^{14}) * 9^{5}}

\frac {(9 * 5^{12} - 5^{13}) * 8^{3}}{2^{9} * 625^{3}}

Zad 2.
Wykaż, że liczba:

6 * 5^{3} + 5^{4} + 5^{5} jest podzielna przez 10,

2 * 3^{5} + 3^{6} + 3^{7} + 3^{8} jest nieparzysta

5 * 3^{7} +  2 * 3^{6} + 3 * 3^{5} jest parzysta

Zad 3.
Rozwiąż równania:

2^{17} * x - 16^{4} * 3 = 5 * (4^{8} * x - 3 * 2^{17})

\frac {x}{2^{5}} + (\frac {1}{4})^{2} = (- \frac {1}{8})^{2} * x + \frac {1}{2^{3}}

Zad 4.
Porównaj liczby:

\sqrt{6} + \sqrt {5} oraz (\sqrt {6} - \sqrt {5} )^{-1}

Zad 5.
Usuń niewymierności z mianownika następujących wyrażeń:

\frac {1}{\sqrt[3]{2} - 1}

\frac {1}{\sqrt[3]{9} + \sqrt[3]{3} + 1}

Zad 6.
Usuń niewymierność z mianownika ułamka:

\frac {1}{\sqrt{6} + \sqrt{3} - \sqrt{10} - \sqrt{5}}

\frac {1}{\sqrt{14} + \sqrt{21} + \sqrt{15} + \sqrt{10}}

\frac {1}{1 + \sqrt{2} + \sqrt{3}}

Z góry dzięki za pomoc.
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:11 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Witam :)
Zad 4.

Liczby są równe, ponieważ:

(\sqrt {6} - \sqrt {5} )^{-1}= \frac{1}{\sqrt {6} - \sqrt {5}} = \frac{\sqrt {6} + \sqrt {5}}{6-5} = \sqrt {6} + \sqrt {5}
;)

[ Dodano: 23 Listopada 2008, 00:24 ]
Zad 5.
a)

Ze wzoru na różnicę sześcianów a ^{3} -b ^{3}

\frac {1}{\sqrt[3]{2} - 1}=  \frac{  \sqrt[3]{4}+ \sqrt[3]{2} +1 }{ (\sqrt[3]{2} - 1 ) (\sqrt[3]{4}+ \sqrt[3]{2} +1) }   =   \frac{  \sqrt[3]{4}+ \sqrt[3]{2} +1 }{  ( \sqrt[3]{2}) ^{3}  -1 ^{3} }        =   \sqrt[3]{4}+ \sqrt[3]{2} +1
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:40 
Użytkownik

Posty: 277
Lokalizacja: Imperium Romanum
Zad 6.

c)
\frac{1}{1+\sqrt{2}+\sqrt{3}} * \frac{(1+\sqrt{2})-\sqrt{3}}{(1+\sqrt{2})-\sqrt{3}} = \frac{1+\sqrt{2}-\sqrt{3}}{(1+\sqrt{2})^{2}-(\sqrt{3})^{2}}=\frac{1+\sqrt{2}-\sqrt{3}}{1+2\sqrt{2}+2-3}=\frac{1+\sqrt{2}-\sqrt{3}}{2\sqrt{2}}*\frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}+2-\sqrt{6}}{4}
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:53 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Zad 1.
b)

\frac {(5^{20} + 5^{18}) * (3^{4})^{3}}{(5^{16} + 5^{14}) * 9^{5}}=
 \frac{3 ^{12}*(5 ^{20}+5 ^{18}  ) }  {3 ^{10}* (5 ^{16}+5 ^{14}  )} =
 \frac{3 ^{2}*5 ^{14}*(5 ^{6}+ 5 ^{4} )  }{5 ^{14}* (5 ^{2}+1 )} =
 \frac{3 ^{2}* 5 ^{4}* (5 ^{2}+1 )}{26} =
 \frac{26*3 ^{2}*5 ^{4}  }{26} =
3 ^{2} *5 ^{4} =3 ^{2} *5 ^{2} *5 ^{2} =5 ^{2} *15 ^{2} =75 ^{2} =5625

[ Dodano: 23 Listopada 2008, 00:58 ]
Zad 1.
c)

\frac {(9 * 5^{12} - 5^{13}) * 8^{3}}{2^{9} * 625^{3}}=
 \frac{5 ^{12}*(9-5)*8 ^{3}  }{2 ^{9}*5 ^{12}  } =
 \frac{4*8 ^{3} }{2 ^{9} } = \frac{2 ^{2}*2 ^{9}  }{2 ^{9} } =4
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:58 
Użytkownik

Posty: 277
Lokalizacja: Imperium Romanum
Swoja droga - nie ma to jak wejsc na forum i wrzucic cala prace domowa :D
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 02:07 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Zad 3.
a)
2^{17} * x - 16^{4} * 3 = 5 * (4^{8} * x - 3 * 2^{17})
2 ^{17} *x-2 ^{16} *3=5*(2 ^{16}*x-3*2 ^{17})
2 ^{16}*(2x-3)=2 ^{16}*5*(x-3*2)
2x-3=5x-30
x=9

[ Dodano: 23 Listopada 2008, 01:20 ]
Zad 3.
b)
\frac {x}{2^{5}} + (\frac {1}{4})^{2} = (- \frac {1}{8})^{2} * x + \frac {1}{2^{3}}
\frac {x}{2^{5}} + \frac{1}{2 ^{4} }= \frac{1}{2 ^{6} } *x+ \frac{1}{2 ^{3} }
\frac{1}{2 ^{3} }*( \frac{x}{2 ^{2}}+\frac{1}{2})= \frac{1}{2 ^{3} }*( \frac{x}{2 ^{3}} +1)
\frac{x}{4}+ \frac{1}{2}  = \frac{x}{8}+1
\frac{2x}{8} - \frac{x}{8}= \frac{1}{2}
x=4

[ Dodano: 23 Listopada 2008, 01:50 ]
Zad 2.
b)
2 * 3^{5} + 3^{6} + 3^{7} + 3^{8}
3^{5} *(2+3 ^{6}+3 ^{7} +3 ^{8} )
243*(2+3 ^{6}+3 ^{7} +3 ^{8} )

Widać wyraźnie, że 243 jest liczbą nieparzystą, natomiast wyrażenie w nawiasie także jest nieparzyste (ponieważ 3 podniesione do potęgi naturalnej zawsze da liczbę nieparzystą, a całość powiększona jeszcze od parzyste 2 także jest liczbą nieparzystą), zatem wymnażając dwa wyrażenia nieparzyste otrzymamy liczbę nieparzystą, co należało wykazać. ;)

[ Dodano: 23 Listopada 2008, 01:58 ]
Zad 2.
c)
5 * 3^{7} +  2 * 3^{6} + 3 * 3^{5}=3 ^{5} *(5*3 ^{2}+2*3+3)=3 ^{5}*(45+6+3)=3 ^{5} *54

Po kilku prostych przejściach widać, że otrzymaliśmy mnożenie liczby nieparzystej i parzystej, zatem ich iloczyn będzie liczbą parzystą, co należało wykazać. ;)

[ Dodano: 23 Listopada 2008, 02:06 ]
Zad 2.
a)
6 * 5^{3} + 5^{4} + 5^{5}=5 ^{2}*(6*5+5 ^{2}+5 ^{3} )=25*180

Widać, że liczba 180 jest podzielna przez 10, ponieważ kończy się cyfrą 0, zatem pomnożona przez dowolną liczbę, w tym przypadku przez 25, zawsze da liczbę podzielną przez 10, co należało wykazać. ;)
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 11:48 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
Wielkie dzięki za pomoc, punkt dla was. ;)

ogre napisał(a):
Swoja droga - nie ma to jak wejsc na forum i wrzucic cala prace domowa


Nie pracę domową, tylko przygotowuję się do sprawdzianu i akurat powyższych przykładów nie za bardzo rozumiałem jak zrobić.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 potegi o wykładniku naturalnym
liczba 2^{10}+5*2^{8}-9*2^{6}+2^{5} jest: 1)parzysta 2)podzielna przez 10 3)podzielna przez 11 trzeba odpowiedziec ktore zdanie jest prawdziwe i uzasadnic...
 ala1609  4
 Potęgi o wykładniku naturalnym - zadanie 2
Proszę o pomoc w zadaniu, a w zasadzie to w jednym przykładzie moim zdaniem najtrudniejszym . Zadanie Ustal, jaka jest ostatnia cyfra każde...
 monis333  1
 Oblicz dzialania ..potęgi i poierwiastki
3\frac{3}{4}:\frac{3}{10}-(-1\frac{1}{6}):\frac{7}{5}= \frac{-48:0,6+1\frac{2}{3} \cdot 54-1\frac{5}{7}:1\frac{1}{14}}{1\frac{1}{3} \cdot (-3\frac{3}{5})+(\frac{3}{5}-2\frac{4}{15}&#41...
 Fantazja91  3
 Odejmowanie potęg o tym samym wykładniku
Wykaż, że liczba 3^{18} -2 ^{18} jest podzielna przez 19. Jak to zrobić? Zwykle dało się jakoś rozłożyć na czynniki, albo ze wzorów na różnice kwadratów, ale tutaj nic takiego nie widzę....
 fart411  2
 Potęgi i pierwiastki, zadanie
Witam, nie wiem jak zrobić ten przykład, proszę o pomoc: \lbrace ft[ ...
 padman  1
 Potęgi - Problem z obliczeniem
(-3\frac{1}{3})^{3}*0,3^{4}-(-\frac{1}{2})^{3}*(1\frac{1}{3})^{2} = -\frac{1000}{27}*\frac{81}{10000}+\frac{1}{8}*\frac{16}{9} = \frac{3}{10}+\frac{2}{9}...
 Jamnikolol  3
 potęga o wykładniku
Witam, Mam problem z obliczeniem: 2 - \frac{3}{5} Na razie usunąłem minus:\left( \frac{1}{2} \right) \frac{3}{5} Dobrze w ogóle? te \frac{3}{5}to potęga...
 Redmine  16
 Obliczanie potęgi - zadanie 2
Proszę o pomoc w obliczaniu np. takiej potęgi 10^{1,95} dziękuję i pozdrawiam...
 honecker  13
 Oblicz ,potęgi
\frac{8 \cdot 3 ^{4} \cdot 3 ^{11}-9 \cdot (3 ^{4} ) ^{3}}{9 ^{7} }=...
 lena23  6
 Podstawa i Wykladnik potegi na minusach?
-3^{-3}=-(3^{-3})=- \frac{1}{27}...
 courtney  2
 Usuwanie nierówności. potęgi i pierwiastki
Więc mam problem z takimi przykładami, prosiłbym o objaśnienie i metode rozwiązania, a ja wyciągne wnioski z tego. a)\frac {64^{4} 32^{-2} : 2^{12...
 kaer  2
 Do potęgi...
Mógłby mi to ktoś rozwiązać ? Nie wiedziałem gdzie wpisać więc wpisalem w ten temat: a)35^2 : (-7)^2 + (-6)^3 : (-2)^3 = b)(-\frac{1}{9})^2 : (\frac{1}{72})^...
 Adeq14  3
 Działania w zbiorach liczb rzeczywistych, potęgi
Witam was serdecznie, otóż muszę się tego nauczyć, ale nie umiem tego zrobić. Dodam, że próbowałem i coś marnie mi wyszło, dlatego proszę o obliczenie tego i wyjaśnienie dlaczego tak, a nie inaczej. Zadania: 1.Obliczyć i podać wynik w postaci nieskra...
 bingo009  0
 Paradoks? Potęgi.
Takie coś mi przyszło do głowy: \frac{3}{4}= \frac{6}{8} 2 ^{ \frac{3}{4} } = 2^{ \frac{6}{8} } \sqrt{8}= \sqrt{64} Dalej (-2) ^...
 Mikolaj9  9
 Przedstaw Iloczyn w postaci potęgi i oblicz
c) ( \frac{1}{2} ) ^{-2} \cdot ( \frac{1}{2} ) ^{3} \cdot (\frac{1}{2} ) ^{-4} \cdot ( \frac{1}{2} \cdot ( \frac{1}{2} ^{3} d) (-0,1) ^{-1} \cdot (-0,1) ^{2} \cdot &#...
 Daniel15049  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com