szukanie zaawansowane
 [ Posty: 7 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 00:47 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
Witam mam problem z rozwiązaniem kliku zadań na potęgach. Jeśli ktoś mógłby napisać jak je zrobić byłbym bardzo wdzięczny.

Zad 1.
Oblicz:

\frac {(1024 - 2^{7}) - 343}{2^{7} * 7^{5}}

\frac {(5^{20} + 5^{18}) * (3^{4})^{3}}{(5^{16} + 5^{14}) * 9^{5}}

\frac {(9 * 5^{12} - 5^{13}) * 8^{3}}{2^{9} * 625^{3}}

Zad 2.
Wykaż, że liczba:

6 * 5^{3} + 5^{4} + 5^{5} jest podzielna przez 10,

2 * 3^{5} + 3^{6} + 3^{7} + 3^{8} jest nieparzysta

5 * 3^{7} +  2 * 3^{6} + 3 * 3^{5} jest parzysta

Zad 3.
Rozwiąż równania:

2^{17} * x - 16^{4} * 3 = 5 * (4^{8} * x - 3 * 2^{17})

\frac {x}{2^{5}} + (\frac {1}{4})^{2} = (- \frac {1}{8})^{2} * x + \frac {1}{2^{3}}

Zad 4.
Porównaj liczby:

\sqrt{6} + \sqrt {5} oraz (\sqrt {6} - \sqrt {5} )^{-1}

Zad 5.
Usuń niewymierności z mianownika następujących wyrażeń:

\frac {1}{\sqrt[3]{2} - 1}

\frac {1}{\sqrt[3]{9} + \sqrt[3]{3} + 1}

Zad 6.
Usuń niewymierność z mianownika ułamka:

\frac {1}{\sqrt{6} + \sqrt{3} - \sqrt{10} - \sqrt{5}}

\frac {1}{\sqrt{14} + \sqrt{21} + \sqrt{15} + \sqrt{10}}

\frac {1}{1 + \sqrt{2} + \sqrt{3}}

Z góry dzięki za pomoc.
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:11 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Witam :)
Zad 4.

Liczby są równe, ponieważ:

(\sqrt {6} - \sqrt {5} )^{-1}= \frac{1}{\sqrt {6} - \sqrt {5}} = \frac{\sqrt {6} + \sqrt {5}}{6-5} = \sqrt {6} + \sqrt {5}
;)

[ Dodano: 23 Listopada 2008, 00:24 ]
Zad 5.
a)

Ze wzoru na różnicę sześcianów a ^{3} -b ^{3}

\frac {1}{\sqrt[3]{2} - 1}=  \frac{  \sqrt[3]{4}+ \sqrt[3]{2} +1 }{ (\sqrt[3]{2} - 1 ) (\sqrt[3]{4}+ \sqrt[3]{2} +1) }   =   \frac{  \sqrt[3]{4}+ \sqrt[3]{2} +1 }{  ( \sqrt[3]{2}) ^{3}  -1 ^{3} }        =   \sqrt[3]{4}+ \sqrt[3]{2} +1
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:40 
Użytkownik

Posty: 277
Lokalizacja: Imperium Romanum
Zad 6.

c)
\frac{1}{1+\sqrt{2}+\sqrt{3}} * \frac{(1+\sqrt{2})-\sqrt{3}}{(1+\sqrt{2})-\sqrt{3}} = \frac{1+\sqrt{2}-\sqrt{3}}{(1+\sqrt{2})^{2}-(\sqrt{3})^{2}}=\frac{1+\sqrt{2}-\sqrt{3}}{1+2\sqrt{2}+2-3}=\frac{1+\sqrt{2}-\sqrt{3}}{2\sqrt{2}}*\frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}+2-\sqrt{6}}{4}
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:53 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Zad 1.
b)

\frac {(5^{20} + 5^{18}) * (3^{4})^{3}}{(5^{16} + 5^{14}) * 9^{5}}=
 \frac{3 ^{12}*(5 ^{20}+5 ^{18}  ) }  {3 ^{10}* (5 ^{16}+5 ^{14}  )} =
 \frac{3 ^{2}*5 ^{14}*(5 ^{6}+ 5 ^{4} )  }{5 ^{14}* (5 ^{2}+1 )} =
 \frac{3 ^{2}* 5 ^{4}* (5 ^{2}+1 )}{26} =
 \frac{26*3 ^{2}*5 ^{4}  }{26} =
3 ^{2} *5 ^{4} =3 ^{2} *5 ^{2} *5 ^{2} =5 ^{2} *15 ^{2} =75 ^{2} =5625

[ Dodano: 23 Listopada 2008, 00:58 ]
Zad 1.
c)

\frac {(9 * 5^{12} - 5^{13}) * 8^{3}}{2^{9} * 625^{3}}=
 \frac{5 ^{12}*(9-5)*8 ^{3}  }{2 ^{9}*5 ^{12}  } =
 \frac{4*8 ^{3} }{2 ^{9} } = \frac{2 ^{2}*2 ^{9}  }{2 ^{9} } =4
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 01:58 
Użytkownik

Posty: 277
Lokalizacja: Imperium Romanum
Swoja droga - nie ma to jak wejsc na forum i wrzucic cala prace domowa :D
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 02:07 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Zad 3.
a)
2^{17} * x - 16^{4} * 3 = 5 * (4^{8} * x - 3 * 2^{17})
2 ^{17} *x-2 ^{16} *3=5*(2 ^{16}*x-3*2 ^{17})
2 ^{16}*(2x-3)=2 ^{16}*5*(x-3*2)
2x-3=5x-30
x=9

[ Dodano: 23 Listopada 2008, 01:20 ]
Zad 3.
b)
\frac {x}{2^{5}} + (\frac {1}{4})^{2} = (- \frac {1}{8})^{2} * x + \frac {1}{2^{3}}
\frac {x}{2^{5}} + \frac{1}{2 ^{4} }= \frac{1}{2 ^{6} } *x+ \frac{1}{2 ^{3} }
\frac{1}{2 ^{3} }*( \frac{x}{2 ^{2}}+\frac{1}{2})= \frac{1}{2 ^{3} }*( \frac{x}{2 ^{3}} +1)
\frac{x}{4}+ \frac{1}{2}  = \frac{x}{8}+1
\frac{2x}{8} - \frac{x}{8}= \frac{1}{2}
x=4

[ Dodano: 23 Listopada 2008, 01:50 ]
Zad 2.
b)
2 * 3^{5} + 3^{6} + 3^{7} + 3^{8}
3^{5} *(2+3 ^{6}+3 ^{7} +3 ^{8} )
243*(2+3 ^{6}+3 ^{7} +3 ^{8} )

Widać wyraźnie, że 243 jest liczbą nieparzystą, natomiast wyrażenie w nawiasie także jest nieparzyste (ponieważ 3 podniesione do potęgi naturalnej zawsze da liczbę nieparzystą, a całość powiększona jeszcze od parzyste 2 także jest liczbą nieparzystą), zatem wymnażając dwa wyrażenia nieparzyste otrzymamy liczbę nieparzystą, co należało wykazać. ;)

[ Dodano: 23 Listopada 2008, 01:58 ]
Zad 2.
c)
5 * 3^{7} +  2 * 3^{6} + 3 * 3^{5}=3 ^{5} *(5*3 ^{2}+2*3+3)=3 ^{5}*(45+6+3)=3 ^{5} *54

Po kilku prostych przejściach widać, że otrzymaliśmy mnożenie liczby nieparzystej i parzystej, zatem ich iloczyn będzie liczbą parzystą, co należało wykazać. ;)

[ Dodano: 23 Listopada 2008, 02:06 ]
Zad 2.
a)
6 * 5^{3} + 5^{4} + 5^{5}=5 ^{2}*(6*5+5 ^{2}+5 ^{3} )=25*180

Widać, że liczba 180 jest podzielna przez 10, ponieważ kończy się cyfrą 0, zatem pomnożona przez dowolną liczbę, w tym przypadku przez 25, zawsze da liczbę podzielną przez 10, co należało wykazać. ;)
Góra
Mężczyzna Offline
PostNapisane: 23 lis 2008, o 11:48 
Użytkownik

Posty: 11
Lokalizacja: Warszawa
Wielkie dzięki za pomoc, punkt dla was. ;)

ogre napisał(a):
Swoja droga - nie ma to jak wejsc na forum i wrzucic cala prace domowa


Nie pracę domową, tylko przygotowuję się do sprawdzianu i akurat powyższych przykładów nie za bardzo rozumiałem jak zrobić.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 7 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 potegi o wykładniku naturalnym
liczba 2^{10}+5*2^{8}-9*2^{6}+2^{5} jest: 1)parzysta 2)podzielna przez 10 3)podzielna przez 11 trzeba odpowiedziec ktore zdanie jest prawdziwe i uzasadnic...
 ala1609  4
 Potęgi o wykładniku naturalnym - zadanie 2
Proszę o pomoc w zadaniu, a w zasadzie to w jednym przykładzie moim zdaniem najtrudniejszym . Zadanie Ustal, jaka jest ostatnia cyfra każde...
 monis333  1
 Potęga o wykładniku całkowitym - zadanie 3
a) \left( 2^{-4}: 2^{-6} \right)^{-1}-\left( 2^{-4}-2^{-3} \right)^{-1}= b) \left( 0,5 \cdot 8^{6}-2 \cdot 16 ^{4} \right): 7^{3} =...
 Marlenka1415  2
 Przesdstaw w postaci potęgi - zadanie 2
10(11 ^{9} + 11 ^{8} + ... + 11 ^{2} + 12) + 1-- 22 lis 2009, o 23:05 --Treścią zadania było ZAPISZ ZA POMOCĄ POTĘGI. Temat jest inny, ponieważ treść zadania jest sprzeczna z regułami nazyw...
 Aleksina  4
 Potęgi o wykładnikach wymiernych - zadanie 2
Mam prosty jakby się wydawało przykład z potęg o wykładnikach wymiernych: (3x ^ {\frac{2}{5}} ) ^{5} Mi wychodzi 9x ^{2}, no bo (3x ^ {\frac{2}{5}} ) ^{5} = 3x...
 Jack24  2
 Jedno pytanko - potęgi
Może mi ktoś wytłumaczyć dlaczego...: -4^2 \cdot (-4)^3 = 1024 ...a nie -1024 skoro wykładnikiem jest liczba ujemna?...
 kabza  1
 Wartość wyrażenia, potęgi o wykładniku wymiernym
(7 ^{-0,7}:7 ^{ \frac{2}{5} }*7 ^{-0,9}) ^{ \frac{1}{2} }...
 d3mon  1
 przedstaw w postaci potęgi liczby 3
przedstaw w postaci potęgi \left( 3^\frac{1}{2} \right) ^{4} \cdot \frac{1}{9} \cdot \left( \sqrt{27} \right) ^{6}...
 marta594  8
 Równanie z niewiadomą w wykładniku potęgi
\left( \sqrt{2 + \sqrt{3} } \right) ^{x} + \left( \sqrt{2 - \sqrt{3} } \right) ^{x} = 4 Sam doszedłem do: \left( 2 + \sqrt{3} \right) ^{ \frac{x}{2} } + \left( 2 - \sqrt{3}...
 sirostr  1
 Obliczanie potęgi o wykładniku wymiernym
Oblicz: a) 2 \cdot 16 ^{-1,5} \cdot 32 ^{1,2} b) 5 ^{-3} \cdot 125 ^{ \frac{2}{3} } \cdot 625 ^{ \frac{5}{4} } c) \left[ \left( \frac{16}{9} \right) ^{ \frac{-...
 Buenos  1
 Potęga o wykładniku wymiernym - zadanie 7
1. Zapisz liczbę w psotaci jednej potęgi o wykładniku wymiernym: a) 5 \sqrt{5 \sqrt{5} } b) 36 \cdot \sqrt{6 \sqrt{6} } 2) \left[ \left[ ( \frac{2}{3}) ^{ -\frac{4}...
 exv  2
 zapisz w postaci potęgi liczby 3 wyrażenie:
3 ^{4} \cdot \frac{1}{81} \cdot 27 ^{-2} \cdot 9 ^{3} Potrzebuję rozwiązać takie wyrażenie i zapisać w postaci potęgi liczby 3...
 nefesz123  2
 Ujemne potęgi. Obliczenia.
Oblicz: Nie umiem zrobić dwóch przykładów. Oto one: 1. 2^{-2} + 5^{0} : \left( 0.5 \right) ^{-2} -5 \cdot \left( -2 \right) ^{-2} + \left( \frac{2}{3} \right) ^{-2} i do całego ułamka [...
 Saken  3
 Do jakiej potęgi podnieść daną liczbę aby otrzymać...
2^{x} = 6 Jak w najprostszy sposób obliczyć ile ma wynieść x??...
 Fr33Q  5
 upraszczanie wyrażeń, potęgi
Uprość wyrazenia i oblicz ich wartości liczbowe \frac{(2a^{2} \cdot b^{3})^{6} \cdot (2a^{2} \cdot b^{3})^{3}}{(2a^{2} \cdot b^{3})^{2}) \cdot (2a^{2} \cdot b^{3})^{5}} dla a= -6 i b=-...
 ollu88  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [Reklama] [Kontakt]
Copyright (C) ParaRent.com