szukanie zaawansowane
 [ Posty: 3 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 6 gru 2008, o 00:02 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Witam :) Proszę o rozwiązanie i wyjaśnienie takiego zadania.

Jaka jest najmniejsza liczba naturalna k, dla której poniższe wynikanie jest prawdziwe dla dowolnych liczb naturalnych m, n i r:   4^{k}|mnr  \Rightarrow  4 ^{5}|m lub 4 ^{3}|n lub 4 ^{12}|r.

Proszę o pomoc.
Pozdrawiam. ;)
Góra
Instytut Matematyczny, Uniwersytet Wrocławski
Mężczyzna Offline
PostNapisane: 6 gru 2008, o 01:14 
Gość Specjalny
Avatar użytkownika

Posty: 2617
Lokalizacja: Warszawa
Niech m=2^a \cdot A, \ n=2^b \cdot B, \ r=2^c \cdot C, gdzie A,B,C są nieparzyste. Wówczas oczywiście liczby A,B,C nie mają wpływu na nic co się dzieje w tym zadaniu, więc dla ustalenia uwagi niech będą jedynką. Z podzielności:
2^{2k}|2^{a+b+c} mamy: a+b+c \ge 2k.

Stąd jeśli nie zachodzi żadna z podzielności:
2^{10}|2^a \\ 2^{6}|2^b \\ 2^{24}|2^c
to musi być: a \le 9, b \le 5, c \le 23, czyli: a+b+c \le 9+5+23=37, czyli aby zachodziła choć jedna z tych podzielności dla dowolnych m,n,r musi być: a+b+c \ge 38 (bo k jest naturalne), a skoro ma to zachodzić dla każdych a,b,c, to wybierzmy minimalne a,b,c (z pierwszej nierówności): a+b+c=2k, czyli: 2k \ge 38 \iff k \ge 19. Zatem k=19 jest minimalne.

Mocno sobie skróciłem opis, ale zrozumiesz mam nadzieję ;)
Góra
Mężczyzna Offline
PostNapisane: 6 gru 2008, o 01:26 
Gość Specjalny
Avatar użytkownika

Posty: 913
Lokalizacja: Kościeliska (woj. opolskie)
Dziękuję bardzo. :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 3 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Najmniejsza liczba naturalna - zadanie 2  addmir  3
 Udowodnij ze liczba jest podzielna przez 31  tomek9393  8
 Liczba sześciocyfrowa  szymek12  1
 Liczba wymierna - zadanie 6  Gucia123  1
 Wykaż, że dla dowolnego n liczba jest naturalna  koktajlik  14
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com