szukanie zaawansowane
 [ Posty: 4 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 4 sty 2009, o 21:45 
Użytkownik

Posty: 232
Lokalizacja: Wawa
Czy można dobrać parametr r tak, aby wektory \vec{a_{1}}=(1,r-2,1) , \vec{a_{2}}=(r,1,-1) były liniowo zależne ?
Znajdź wektor \vec{a_{3}} taki że układ \vec{a_{1}}, \vec{a_{2}}, \vec{a_{3}} jest bazą przestrzeni R^{3}

Do tej drugiej części to poprostu muszę sprawdzić czy np. dowolnie wzięty wektor \vec{a_{3}} uzupełnia bazę ? (liczę rząd, wyznacznik i jeśli \neq 0 to wektor uzupełnia zbiór do bazy . Zgadza się czy jakoś inną metodą trzeba do tego podejść?

Za pomoc w rozwiązaniu , z góry dziękuję .
Góra
Kobieta Offline
PostNapisane: 4 sty 2009, o 22:17 
Użytkownik

Posty: 80
Lokalizacja: Kraków
Wydaje mi się, że aby te wektory były liniowo zależne r=-1

Sprawdziłam to w ten sposób:
a(1,r-2,1) + b(r,1,-1)=(0,0,0)
wyszło, że a=b i a(1+r)=0
czyli, żeby a mogło być różne od 0, to r=-1


1 r-2 1

r 1 -1

a b c

-to ma być macierz, jeżeli ktoś byłyby tak łaskawy niech mnie oświeci jak zrobić "porządny" zapis macierzy;

Następnie trzeba obliczyć wyznacznik tej powyższej macierzy i wybrać takie, a,b,c, żeby był on różny od zera.

Czyli jest takie równanie -cr ^{2} + (b-a-2c)+b-a+c  \neq 0

Nie wiem, myślę, że to będzie dobrze. Wtedy trzebna dobrać takie a,b,c, żeby spełniły powyższe założenie.
Góra
Mężczyzna Offline
PostNapisane: 7 sty 2009, o 18:48 
Użytkownik

Posty: 232
Lokalizacja: Wawa
Madame napisał(a):
Wydaje mi się, że aby te wektory były liniowo zależne r=-1

Sprawdziłam to w ten sposób:
a(1,r-2,1) + b(r,1,-1)=(0,0,0)
wyszło, że a=b i a(1+r)=0
czyli, żeby a mogło być różne od 0, to r=-1


A nie powinno być że r \neq -1 ??? *wtedy według mnie a będzie \neq 0

PS. Macierze zapisuje się w Latex-ie o tak (przykład macierzy 3x3):

Kod:
1
[tex]\begin{bmatrix} a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{bmatrix}[/tex]
Góra
Mężczyzna Offline
PostNapisane: 8 sty 2009, o 00:28 
Użytkownik

Posty: 3101
Lokalizacja: Zarów
Madame napisał(a):
Wydaje mi się, że aby te wektory były liniowo zależne r=-1

Sprawdziłam to w ten sposób:
a(1,r-2,1) + b(r,1,-1)=(0,0,0)
wyszło, że a=b .

Tutaj widać, że a = -b. Zeby nie przeciągać. Te wektory nie mogą być liniowo zależne, bo nie są równoległe.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 4 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Wartosci i wektory własne przekształcenia liniowego (macierz  MakCis  0
 wektory w przestrzeni  tm_1987  1
 wektory zależne  lotta666  1
 Wartości i wektory własne macierzy zespolonej  8_sigi_8  4
 wartości i wektory własne  mmarry  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com