szukanie zaawansowane
 [ Posty: 2 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 25 sie 2012, o 12:03 
Użytkownik

Posty: 1405
Lokalizacja: Sosnowiec
Jeśli u:\mathbb{R}^{2}\to\mathbb{R} to operator Laplace'a wyraża się wzorem \Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}. Na wykładzie z równań różniczkowych cząstkowych rozwiązywaliśmy równanie Laplace'a (tzn. \Delta u=0) w kole jednostkowym i zrobiliśmy tam przejście na współrzędne biegunowe, po którym operator Laplace'a wyglądał tak:
\frac{1}{\rho}\frac{\partial}{\partial \rho}\left(\rho\frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}}\frac{\partial^{2}u}{\partial \phi^{2}}
u=u(\rho,\phi), \rho \in [0,1], \phi \in [0,2\pi]
Czy ktoś mógłby wyjaśnić skąd się to wzięło?
Góra
PostNapisane: 25 sie 2012, o 12:07 
Użytkownik
254093.htm

przykład 4
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 2 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Transformacje Laplace'a  szimano1  0
 Funkcja e^-(sT) z transformaty Laplace'a.  Gl0dnyWiedzy  0
 Transformata Laplace, równanie różniczkowe  rrycerz  3
 odwr. t. Laplace'a gotowej f-cji  kbzium  6
 Prosta transformata Laplace`a  yonagold  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl