szukanie zaawansowane
 [ Posty: 5 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 28 sie 2012, o 17:20 
Użytkownik

Posty: 3
Lokalizacja: Warszawa
witam
mam problem z nastepujacym zadaniem: pokazać ze 3 płaszczyzny o podanych równaniach przecinaja sie wzdłuz jednej prostej:
6x+6y-z-7=0 \\ 3x+3y+2z-1=0 \\ x+y-z-2=0

Proszę o "łopatologiczne" wyjaśnienie. z Gory dziekuje:)
Góra
Mężczyzna Offline
PostNapisane: 28 sie 2012, o 19:49 
Moderator

Posty: 4439
Lokalizacja: Łódź
Rozwiąż układ równań utworzony przez równania płaszczyzn. Wykaż, że ma on nieskończenie wiele rozwiązań, jednak wszystkie można opisać w zależności od jednego parametru.
Góra
Mężczyzna Offline
PostNapisane: 29 sie 2012, o 11:37 
Użytkownik

Posty: 3
Lokalizacja: Warszawa
aha, dziękuję zrobiłem tak jak powiedziałeś tylko nie wiem dlaczego musi byś zależność od jednego parametru, znalazłem podpunkt w którym trzeba znaleźć równanie prostej przez która te płaszczyzny przechodzą. wychodzi mi tożsamość
Góra
Mężczyzna Offline
PostNapisane: 29 sie 2012, o 19:40 
Moderator

Posty: 4439
Lokalizacja: Łódź
Słusznie otrzymujesz tożsamość przy rozwiązywaniu układu równań. Prosta jest bowiem obiektem jednowymiarowym, dlatego jej równanie musi być zależne od (tylko jednego) parametru.

Spróbujmy rozwiązać ten układ.
Odejmując trzecie równanie od pierwszego dostajemy 5(x+y-1)=0, tj. x+y=1. Wobec tego mamy też z=-1. Zatem każde rozwiązanie układu równań ma, w zależności od x postać (x,1-x,-1) (lub równoważnie (1,-1,0)x+(0,1,-1)).
Jak zauważyłeś, otrzymaliśmy równanie parametryczne prostej będącej częścią wspólną danych płaszczyzn.
Góra
Mężczyzna Offline
PostNapisane: 3 wrz 2012, o 12:33 
Użytkownik

Posty: 3
Lokalizacja: Warszawa
Dziękuje:D przepraszam ze odpisuje po długim czasie. Nurtuje mnie jeszcze jedno. czy z 2 wektorów płaszczyzn mogę obliczyć wektor prostopadły i wtedy już mam gotowe równanie parametryczne? sądzę ze wektor prostopadły jest jednocześnie równoległy do prostej będącej częścią wspólną płaszczyzn, podstawiam punkt i gotowe?
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 5 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 wzajemne położenie płaszczyzn  natkoza  0
 Wzajemne położenie płaszczyzn - zadanie 4  Zgilotynowany  3
 Wzajemne położenie płaszczyzn - zadanie 5  Benny01  2
 położenie punktów względem prostej  danek8919  1
 Równanie pęku płaszczyzn  Dominik J  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl