szukanie zaawansowane
 [ Posty: 1 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 12 mar 2007, o 23:37 
Gość Specjalny
Avatar użytkownika

Posty: 1501
Lokalizacja: Kraków
Postanowiłem napisać to kompendium ponieważ uważam, że zadania o szybkości średniej są często spotykane oraz są z nimi liczne kłopoty.

Weźmy dla przykładu takie oto zadanko:

Cytuj:
Rowerzysta pokonał pierwszą połowę drogi z prędkością 20 m/s, drugą zaś z prędkością 10m/s. Jaka była jego szybkość średnia?


Sposób rozwiązania:

Najpierw musimy dowiedzieć się co to takiego ta szybkość średnia. Z definicji (trochę uproszczonej):
Cytuj:
SZYBKOŚĆ ŚREDNIA jest to całkowita droga jaką przejechał dany obiekt do czasu trwania jego ruchu (całego czasu).

Wiedząc że wzór na szybkość wygląda tak:
v=\frac{s}{t}
możemy to łatwo obliczyć :wink:

Ale ale jest pewien problem :?: We wzorze mamy czas i drogę, a w danych czegoś takiego niema co zrobić w takim wypadku?

Pierwszą rzeczą jest przekształcenie naszego słynnego wzoru na szybkość tak żeby wyznaczyć z niego czas. Więc do dzieła:

v=\frac{s}{t}|\cdot t \rightarrow vt=s|:V \rightarrow t= \frac{s}{v}

Mamy wyznaczony czas.
Po drugie dla łatwiejszego rozrachunku drogę całkowitą rozbijmy sobie na dwie połówki, czyli s będzie dla nas połową drogi.
Podstawiając do wzoru na szybkość średnią
v_{sr}=\frac{s+s}{t_1+t_2}
gdzie:

t_1 - czas na pokonanie pierwszej połowy drogi,
t_2 - czas na pokonanie drugiej połowy drogi.

Teraz podstawiamy za t_1 i t_2 pod wzór, który wyznaczyliśmy kilka linijek wyżej:
v_{sr}=\frac{2s}{\frac{s}{v_1}+\frac{s}{v_2}}.

Z części \frac{s}{v_1}+\frac{s}{v_2} możemy wyciągnąć s przed nawias (mam nadzieję, że każdy wie jak to zrobić), mamy więc:

v_{sr}=\frac{2s}{s\cdot (\frac{1}{v_1}+\frac{1}{v_2})},

skracamy przez s:

v_{sr}=\frac{2}{\frac{1}{v_1}+\frac{1}{v_2}}

i w mianowniku doprowadzamy do wspólnego mianownika :wink: Czyli:

v_{sr}=\frac{2}{\frac{v_1+v_2}{v_2 \cdot v_1}}

Dalej wiadomo że jak dzielimy przez ułamek to jest równoznaczne z mnożeniem przez jego odwrotność:

v_{sr}=\frac{2 \cdot v_2 \cdot v_1}{v_1+v_2}.

Mając to wyznaczone podstawiamy dane liczbowe:

v_{sr}=\frac{2 \cdot 20\frac{m}{s} \cdot 10\frac{m}{s}}{10\frac{m}{s}+20\frac{m}{s}},\\
v_{sr}=\frac{400\frac{m^2}{s^2}}{30 \frac{m}{s}},\\
v_{sr}\approx 13 \frac{m}{s}

Jak widać prędkość ta jest inna niż średnia arytmetyczna która wynosi 15m/s.
Dla zainteresowanych szybkość średnią w tym przypadku oblicza się korzystając ze średniej harmonicznej (o niej i o innych średnich możecie poczytać w TYM topicu).

BTW
to kompendium starałem się napisać jak najbardziej łopatologicznie.
mam nadzieje ze moja praca pomoże komuś, ułatwi zrozumienie zagadnienia.
wszelkie niejasności, zauważone błędy oraz sugestie proszę zgłaszać na PW


EDIT:
Jako, że autor wątku nie pojawił się na forum od dłuższego czasu, błąd merytoryczny (wskazany przez użytkownika korki_fizyka, dzięki :wink:) poprawiłem ja. Błąd ten polegał na nazywaniu prędkością średnią coś, co zwykle nazywa się szybkością średnią (przez niektórych autorów nazywaną "średnią wartością prędkości"). Prędkość średnia jest wielkością wektorową i w ogólności nijak ma się do szybkości średniej.
Ponadto poprawiłem trochę gramatykę, interpunkcję i takie tam.

AiDi
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 1 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 (2 zadania) Oblicz wartości funkcji trygonometrycznych kąt  Anonymous  1
 (3 zadania) Wykaż, że liczby są podzielne przez ...  Anonymous  5
 (2 zadania) Ciąg arytemtyczny i geometryczny  Anonymous  3
 (2 zadania) Znajdź wyrazy ciągu arytmetycznego  Anonymous  2
 (2 zadania) Oblicz stosunek pól kół. Oblicz kąt ostry  Anonymous  4
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl