szukanie zaawansowane
 [ Posty: 3 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 5 gru 2012, o 15:26 
Użytkownik

Posty: 175
Lokalizacja: Kalisz
Napisz równanie prostej przechodzącej przez punkt M=(1,2,3) oraz
a)równoległa do wektora (-1,0,2)
b) równoległej do prostej x=-3+2t y=2-3t z=5
jak wyliczyć proste?
Góra
Mężczyzna Offline
PostNapisane: 5 gru 2012, o 15:33 
Użytkownik

Posty: 2750
Lokalizacja: podkarpacie
Jeżeli prosta ma być równoległa do wektora, to wektor ten jest jednocześnie wektorem kierunkowym prostej. Piszemy zatem od razu równanie parametryczne prostej o danym wektorze kierunkowym i przechodzącej przez podany punkt:
\left\{\begin{array}{l}
x=1-t\\y=2\\z=3+2t\end{array}\right.
W drugim najpierw z podanego równania prostej odczytujemy jej wektor kierunkowy \vec{k}=[2,-3,0], z równoległości tych prostych wynika, że będzie to wektor kierunkowy szukanej prostej, punkt jest podany, więc równanie
\left\{\begin{array}{l}
x=1+2t\\y=2-3t\\z=3\end{array}\right.
Góra
Mężczyzna Offline
PostNapisane: 5 gru 2012, o 15:47 
Użytkownik

Posty: 175
Lokalizacja: Kalisz
to jest koniec zadania dla prostej, czy czy muszę podłożyć punty??
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 3 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Równanie prostej - zadanie 2  Iwa  1
 równanie prostej - zadanie 3  maciek2000221  1
 równanie prostej - zadanie 4  sławek1988  3
 Rownanie prostej  lookasiu87  0
 rownanie prostej - zadanie 2  kozak  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl