szukanie zaawansowane
 [ Posty: 5 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 20:36 
Użytkownik

Posty: 111
Lokalizacja: Krosno
Obliczyć I, II Formę Fundamentalną, krzywiznę główną, krzywiznę Gaussa, średnią krzywiznę normalną walca:
x(u,v)=(a cosu,asinu,v)

Mam problem z wyznaczeniem krzywizny głównej. Ktoś ją mógłby wskazać?

Tutaj rozwiązanie:

x'_{u}=(-asinu,acosu,0)

x'_{v}=(0,0,1)

I Forma F.:
I=
\left[ {{a^{2},0}\right]
\left[ \right{0,1}]
(To jest macierz, nie znam komendy na nią;) )

Wersor normalny: (po wcześniejszym obliczeniu iloczynu wektorowego i podzieleniu przez jego długość)
n=(cos,sinu,0)

II Forma F.:
II=
\left[ {{-a,0}\right]
\left[ \right{0,0}]

Macierz operatora ksztaltu:
S=I^{-1}*II=

\left[ {{ \frac{-1}{a} ,0}\right]
\left[ \right{0,  0}]
Krzywizna Gaussa to wyznacznik z S, średnia krzywizna normalna to połowa śladu S.

A krzywizna główna to co to jest? :)
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2018
Góra
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 21:35 
Użytkownik

Posty: 22652
Lokalizacja: piaski
A temat po zbóju.
Góra
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 21:39 
Użytkownik

Posty: 111
Lokalizacja: Krosno
O co Ci chodzi?

Nie wiem, jak się wyznacza krzywiznę główną. Sądziłem, że jest ona gdzieś "ukryta" w tych obliczeniach, które napisałem.
Góra
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 21:40 
Użytkownik

Posty: 22652
Lokalizacja: piaski
A mi się temat ,,spodobał" - i na to zwróciłem Ci uwagę.
Góra
Mężczyzna Offline
PostNapisane: 6 sty 2013, o 21:45 
Użytkownik

Posty: 111
Lokalizacja: Krosno
A mógłbyś zwrócić również uwagę na mój problem?
Będę wdzięczny za pomoc
:wink:

-- 6 sty 2013, o 21:00 --

Aaa :lol: Teraz zajarzyłem o co chodzi (po edycji mojego pierwszego posta, hehe). To "zjedzenie" literówki nie było zamierzone. Wybaczcie
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 5 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Czym jest zbiór pkt. płaszczyzny spełniających równan  Anonymous  5
 Wyznaczyć wart. param. dla których ukł. jest l. niezaleĹ  Anonymous  2
 Wyznacz wart. param. dla których ukł. jest liniowo zależ  Anonymous  3
 Czym jest zbiór punktów sfery znajdujących się między  Anonymous  1
 Sprawdź, czy trójkąt równoramienny jest ostrokątny  Ewcia  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl