szukanie zaawansowane
 [ Posty: 13 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 27 wrz 2015, o 08:55 
Użytkownik

Posty: 40
Lokalizacja: Wrocław
Podaj liczbę elementów zbioru A \cup B, jeśli:
- A jest zbiorem trzycyfrowych liczb naturalnych parzystych, B jest zbiorem trzycyfrowych liczb naturalnych podzielnych przez 7.

liczba elementów w A: 9 \cdot 10 \cdot 5=450

Jak wyznaczyć liczbę elementów w B?
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2018
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 09:41 
Użytkownik
Avatar użytkownika

Posty: 2782
Pierwszą liczbą trzycyfrową podzielną przez 7 jest 105, a ostatnią 994.

Może przyda się cecha podzielności przez siedem?
Góra
Mężczyzna Offline
PostNapisane: 27 wrz 2015, o 10:18 
Administrator

Posty: 22241
Lokalizacja: Wrocław
Poszukujaca napisał(a):
Może przyda się cecha podzielności przez siedem?

Nie przyda się. Lepiej policzyć, ile jest liczb podzielnych przez 7 mniejszych od 1000 i odjąć liczbę tych, które są podzielne przez 7 i mniejsze od 100.


JK
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 12:13 
Użytkownik

Posty: 40
Lokalizacja: Wrocław
Poszukujaca napisał(a):
Może przyda się cecha podzielności przez siedem?


Gdybym chciała skorzystać z cechy podzielności przez 7, to nie potrafię wykorzystać znajomości tej z iloczynem kolejnych cyfr przez potęgi trójki do jakiegoś sensownego zapisu, w jaki sposób można to zrobić?

-- 27 wrz 2015, o 11:42 --

Jan Kraszewski napisał(a):
Lepiej policzyć, ile jest liczb podzielnych przez 7 mniejszych od 1000 i odjąć liczbę tych, które są podzielne przez 7 i mniejsze od 100.


Podzielne przez 7 mniejsze od 1000:
a_{1}=7, a_{n}=994\\
994=7+7n-7\\
n=142

Podzielne przez 7 mniejsze od 100:
a_{1}=7, a_{n}=98\\
98=7+(n-1)7\\
91=7n-7\\
n=14\\
\\
142-14=128

W ten sposób?
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 12:54 
Użytkownik
Avatar użytkownika

Posty: 2782
Tak. Bardzo dobry sposób.
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 15:36 
Użytkownik

Posty: 40
Lokalizacja: Wrocław
Ale jak byłoby z wykorzystaniem cechy podzielności przez 7?

Co do powyższych wyliczeń: liczba elementów A \cup B=128+450=578, a według odpowiedzi z książki wynik to 514.
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 16:07 
Użytkownik
Avatar użytkownika

Posty: 4413
Lokalizacja: Łódź
Musisz odjąć liczbę wspólnych elementów obu zbiorów, bo liczysz je dwukrotnie.
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 17:01 
Użytkownik
Avatar użytkownika

Posty: 2782
Ert napisał(a):
Ale jak byłoby z wykorzystaniem cechy podzielności przez 7?


Jednak cecha podzielności nie jest dobrym sposobem, bo trzeba byłoby sprawdzać każdą liczbę po kolei..
Notabene cech podzielności przez siedem jest kilka, a ta najpopularniejsza dotyczy liczb tylko >1000.
Góra
Mężczyzna Offline
PostNapisane: 27 wrz 2015, o 18:05 
Administrator

Posty: 22241
Lokalizacja: Wrocław
Ert napisał(a):
Co do powyższych wyliczeń: liczba elementów A \cup B=128+450=578, a według odpowiedzi z książki wynik to 514.

Wzór to

|A\cup B|=|A|+|B|-|A\cap B|.

JK
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 19:30 
Użytkownik

Posty: 40
Lokalizacja: Wrocław
kropka+ napisał(a):
Musisz odjąć liczbę wspólnych elementów obu zbiorów, bo liczysz je dwukrotnie.

A rzeczywiście. Nie wiem, jak wyznaczyć część wspólną w takiej sytuacji.
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 19:34 
Użytkownik
Avatar użytkownika

Posty: 4413
Lokalizacja: Łódź
Najmniejsza wspólna liczba to? A największa to? I pomiędzy nimi co czternasta.
Góra
Mężczyzna Offline
PostNapisane: 27 wrz 2015, o 19:42 
Administrator

Posty: 22241
Lokalizacja: Wrocław
Ert napisał(a):
Nie wiem, jak wyznaczyć część wspólną w takiej sytuacji.

To są liczby, które spełniają oba warunki, zatem trzycyfrowe parzyste podzielne przez 7, czyli, jak napisała kropka+, podzielne przez 14. Zliczasz tak samo, jak poprzednio.

JK
Góra
Kobieta Offline
PostNapisane: 27 wrz 2015, o 20:12 
Użytkownik

Posty: 40
Lokalizacja: Wrocław
A \cap B:\\
 a_{1} =112\\
 a_{n} =994\\
994=112+14n-14\\
n=64
liczba elementów A \cup B=128+450-64=514

Dziękuję za pomoc.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 13 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Ile jest dzielnikow liczby  Anonymous  6
 ustawianie osob w rzedzie, liczby n-cyfrowe itp  Anonymous  16
 Ilość elementów w zbiorze-zadanie.  Anonymous  2
 Ilość suriekcji zbioru k-elementowego na n-elementowy  DEXiu  2
 liczby podzielne  BSD  9
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl