szukanie zaawansowane
 [ Posty: 5 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 7 paź 2015, o 15:58 
Użytkownik

Posty: 62
Lokalizacja: Quillrabe
Trzeba rozłożyć na czynniki takie sumy:

1. a^4-2a^3+a^2-1
2. a^4-a^2-2a-1
3. ab(b-a) + bc(b+c) - ac(a+c)

Na to są jakieś wzory czy trzeba po prostu doznać olśnienia by to wyliczyć? Każde moje przekształcenie powoduje, że te wzory jeszcze bardziej się komplikują niż rozkładają na czynniki.
Góra
Mężczyzna Offline
PostNapisane: 7 paź 2015, o 16:11 
Użytkownik

Posty: 13580
Lokalizacja: Bydgoszcz
1
a^2(a-1)^2-1

2
a^4-(a+1)^2 - dalej radź sobie sam. Reguł nie ma, trzeba wpaść na pomysł

3
Popatrz na to wyrażenie jak na wielomian zmiennej a i zauważ, że b jest jego pierwiastkiem
Góra
Mężczyzna Offline
PostNapisane: 8 paź 2015, o 11:36 
Użytkownik

Posty: 62
Lokalizacja: Quillrabe
1. a^2(a-1)^2-1 = \big(a(a-1)\big)^2-1^2 i dalej ze wzoru a^2-b^2=(a+b)(a-b).

2. a^4-(a+1)^2 = \big(a^2\big)^2-(a+1)^2 i z tego samego wzroru jak powyżej.

Dwa powyższe rozumiem.

3.
a4karo napisał(a):
Popatrz na to wyrażenie jak na wielomian zmiennej a i zauważ, że b jest jego pierwiastkiem
Ehh nie widzę jeszcze tego. Możesz to jaśniej wytłumaczyć i napisać w jaki sposób rozłoży się ta suma?
Góra
Kobieta Offline
PostNapisane: 8 paź 2015, o 11:42 
Użytkownik
Avatar użytkownika

Posty: 2505
Napisz

W(a) =  ab^2 - a^2b + bc(b+c) - a^2c-ac^2 = a^2 (-b - c) + a (b^2 - c^2) + (b^2c + bc^2).

Litery b, c oznaczają nieznane Ci parametry. Skoro W(b) = b^2 (-b-c) + b (b^2 - c^2) + b^2 c + bc^2 = -b^3 - cb^2 + b^3 - bc^2 + b^2c + bc^2 = 0, to W(a) = (a-b) (\ldots). Ile to jest \ldots powie Ci chociażby schemat Hornera.
Góra
Mężczyzna Offline
PostNapisane: 8 paź 2015, o 11:45 
Moderator

Posty: 3929
Lokalizacja: Kraków PL
ReallyGrid napisał(a):
3.
a4karo napisał(a):
Popatrz na to wyrażenie jak na wielomian zmiennej a i zauważ, że b jest jego pierwiastkiem
Ehh nie widzę jeszcze tego. Możesz to jaśniej wytłumaczyć i napisać w jaki sposób rozłoży się ta suma?
Podstaw a=b, to zobaczysz.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 5 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 rozkładanie na czynniki - zadanie 17  Illuminium  7
 rozkładanie na czynniki - zadanie 15  Damieux  2
 Rozkładanie na czynniki - zadanie 16  Kappurubea  6
 Rozkładanie na czynniki - zadanie 18  Tuhaj  1
 rozkładanie na czynniki - zadanie 11  uczen94  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl