szukanie zaawansowane
 [ Posty: 2 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 6 lut 2016, o 16:26 
Użytkownik

Posty: 1
Lokalizacja: krk
Wybierzmy zbiór {}2016 liczb naturalnych. Udowodnić, że można wybrać z tego zbioru takie liczby, że ich suma jest podzielna przez {}2016 .
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2018
Góra
Mężczyzna Offline
PostNapisane: 6 lut 2016, o 16:57 
Użytkownik
Avatar użytkownika

Posty: 642
Lokalizacja: Puck i Trójmiasto
oznaczmy te liczby a_1, a_2, \ldots, a_{2016}

następnie rozważmy sumy s_i = a_1 + \ldots + a_{i}

jeśli któraś z sum daje resztę 0 z dzielenia przez 2016 to koniec zadania

jeśli nie to mamy 2016 reszt z dzielenia przez 2016 ale te reszty pochodzą ze zbioru \{ 1,2, \ldots, 2015\}

z ZSDirichleta wynika że dwie z sum s_i dają wtedy tę samą resztę. Różnica tych dwóch sum też jest pewną sumą oraz daje już resztę 0.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 2 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Podzielność pewnych liczb  kasia145_1994  1
 Podzielność przez 4 - zadanie 7  polmos_prl  1
 Podzielność przez 10 - zadanie 2  ijol  2
 Proste pytanie o podzielnosc zera  tomasz90skomra  4
 Podzielność sumy potęg o podstawie 2 przez 120.  paaauula  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl