szukanie zaawansowane
 [ Posty: 11 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 20 wrz 2016, o 11:28 
Użytkownik

Posty: 12
Mam profil aluminiowy o wymiarach 15x30x2mm (przekrój na rys.). Profil ma 1m i jest przymocowany do ściany i obciążony na jednym końcu 2kg. profil ugina się o 13,3 jednostek (przed i po obciążeniu odczytane były wartości wskazywane przez laser na skali oddalonej o 5m od lużnego końca belki).
Znam masę profilu, momenty bezwładności, moduł Younga oraz pole powierzchni przekroju poprzecznego.

jak wyliczyć/oszacować o ile ugnie się profil o tych samych wymiarach, ale ściance o grubości 3mm. Dla tego profilu również znane są masa, momenty, modul Younga i pole powierzchni przekroju.

Z góry dziękuję za podpowiedzi :)

Obrazek
Góra
Mężczyzna Offline
PostNapisane: 20 wrz 2016, o 14:32 
Użytkownik

Posty: 5988
Lokalizacja: Staszów
"jak wyliczyć/oszacować o ile ugnie się profil o tych samych wymiarach, ale ściance o grubości 3mm.''?
Znając ogólną postać równania różniczkowego ugięcia belki pryzmatycznej :
E J y'' = -M , zauważamy, że zarówno strzałka ugięcia jak i kąt obrotu przekroju są wprost proporcjonalne do odwrotności osiowego momentu bezwładności przekroju. Stąd już można wyprowadzić prostą proporcję ugięcia do osiowego momentu bezwładności.
Napisanie bezpośredniej zależności strzałki ugięcia od grubości ścianki wymagać będzie tylko żmudnych zabiegów rachunkowych. Poręczniej będzie, jeżeli jest to sposób dopuszczalny przez stawiającego problem, obliczyć osiowe momenty bezwładności dla obu przekrojów, i przyrównać wyniki.
Tym sposobem można oszacować tylko moduł sprężystości podłużnej E. Innych wielkości fizycznych materiału już nie, z prostego powodu, co widać.
W.Kr.
Góra
Mężczyzna Offline
PostNapisane: 21 wrz 2016, o 09:24 
Użytkownik

Posty: 12
Cytuj:
Poręczniej będzie, jeżeli jest to sposób dopuszczalny przez stawiającego problem, obliczyć osiowe momenty bezwładności dla obu przekrojów, i przyrównać wyniki.


A jak dla takiego kształtu przekroju obliczyć osiowe momenty bezwładności??
Góra
Mężczyzna Offline
PostNapisane: 21 wrz 2016, o 12:23 
Użytkownik

Posty: 5988
Lokalizacja: Staszów
Podstawowe są stablicowane np. tu:
https://pl.wikipedia.org/wiki/Lista_mom ... no%C5%9Bci
Złożone wg tw. Steinera.
W.Kr.
Góra
Mężczyzna Offline
PostNapisane: 22 wrz 2016, o 09:31 
Użytkownik

Posty: 12
Już obliczyłem momenty bezwładności, ale cięgle nie wiem jak stworzyć proporcje która pokaże o ile mniej się ugnie profil o grubszych ściankach.

Proszę o podpowiedź :)
Góra
Mężczyzna Offline
PostNapisane: 22 wrz 2016, o 10:56 
Użytkownik

Posty: 5988
Lokalizacja: Staszów
Proszę zatem przedstawić końcowe wyniki i schemat belki z obciążeniem, żeby nie było później nieporozumień.
Jeżeli ciężar belki jest istotny to proszę obliczyć dla obu przekrojów i "użyć" w obliczeniach (obciążenie ciągłe).
Góra
Mężczyzna Offline
PostNapisane: 23 wrz 2016, o 09:03 
Użytkownik

Posty: 12
Użyłem wzoru dla kształtu owalnego (mam nadzieję że dobrze go dostosowałem :) )
I _{w}= \frac{ \pi \left( A ^{3}-a ^{3}*B-b  \right) }{4}

Jeśli można pominąć ciężar belki, to jestem za :)

Obrazek
Góra
Mężczyzna Offline
PostNapisane: 23 wrz 2016, o 13:23 
Użytkownik

Posty: 5988
Lokalizacja: Staszów
Pewnie będzie nie ładnie z mojej strony zauważyć, że "wzory" te nie trzymają się kupy. Proszę też nie wymagać od ''pomagającego na Forum" by podstawiał liczby, wykonywał rachunki i robił temu podobne ćwiczenia.
W.Kr.
Góra
Mężczyzna Offline
PostNapisane: 23 wrz 2016, o 14:03 
Użytkownik

Posty: 12
kruszewski napisał(a):
Pewnie będzie nie ładnie z mojej strony zauważyć, że "wzory" te nie trzymają się kupy. Proszę też nie wymagać od ''pomagającego na Forum" by podstawiał liczby, wykonywał rachunki i robił temu podobne ćwiczenia.
W.Kr.


Nie wymagam ani nie oczekuję :) Nie jestem dobry w takich rachunkach, a sam pomysł tych obliczeń sam uważam za kosmiczny.
Liczyłem tylko na opinię czy takie coś da się przeprowadzić. A jeśli tak, to miarę prostą instrukcję.
I zdecydowanie nie oczekuję, że ktoś to za mnie zrobi.
Góra
Mężczyzna Offline
PostNapisane: 23 wrz 2016, o 15:12 
Użytkownik

Posty: 5988
Lokalizacja: Staszów
Osiowy moment bezwładności pola elipsy J_x= \frac{ \pi }{4} \cdot a^3  \cdot b
gdzie a jest dużą półosią (wzdłuż y) , zaś b małą półosią elipsy (wzdłuż x).
Moment bezwładności "eliptycznej rury" o wymiarach poprzecznych (przekroju) 2a=30 \ mm; \ 2b=15 \ mm, g= 2 \ lub \ 3 \ mm to:
dla g=2 \ mm
J_1_x= \frac{ \pi }{4} \left( (15^3 \cdot 7,5) -(13^3 \cdot 5,5) \right)   \ mm^4
Analogicznie dla grubszej ścianki: (to proszę napisać już i wyrachować samemu).
Pamiętając że we wzorze na strzałkę ugięcia końca tak obciążonej belki osiowy moment bezwładności występuje w pierwszej potędze możemy napisać że, stosunek ugięć będzie proporcjonalny do odwrotności stosunku osiowych momentów bezwładności przekrojów (pryzmatycznych) jednakowo obciążonych belek o jednakowej długości.
\frac{f_1}{f_2} =  \frac{J_2_x}{J_1_x}


W.Kr.
Góra
Mężczyzna Offline
PostNapisane: 26 wrz 2016, o 09:50 
Użytkownik

Posty: 12
Bardzo dziękuje za pomoc :)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 11 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 strzałka ugięcia - zadanie 2  inulix  0
 Obliczanie strzałki ugięcia i kąta  pawel30w  1
 Linia ugiecia belki - zadanie 2  mascot992  1
 Strzałka ugięcia płyty  wpp991  0
 Linia ugięcia belki z dwoma momentami  dyku  6
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl