szukanie zaawansowane
 [ Posty: 38 ]  Przejdź na stronę Poprzednia strona  1, 2, 3
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 6 kwi 2018, o 12:21 
Użytkownik

Posty: 4
Lokalizacja: Gdańsk
To bardzo ciekawe spostrzeżenia. Ale nie wiem czy w pośpiechu i stresiku tak szybko bym na nie wpadł, szczególnie, że nie zacząłbym od sprawdzania po kolei przypadków.
Lubię czytać tok myślenia innych, inspiruje mnie to :) ile głów, tyle dróg do rozwiązania!
A to, że po przykładzie 1012 nasuwało się 2101 to inna kwestia ;)
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2018
Góra
Mężczyzna Offline
PostNapisane: 28 maja 2018, o 20:52 
Gość Specjalny

Posty: 1144
Lokalizacja: Kraków
I jak wrażenia po finale? :)

Pogoda dopisała, więc było całkiem przyjemnie, ale do rzeczy...
Jeżeli chodzi o zadania to wydaje mi się, że w tym roku trzeba było sprawdzać więcej przypadków ręcznie, co wydłużało czas spędzony na niektórych zadaniach. Osobiście nie mogłem się wyrobić w 3h ze wszystkimi zadaniami. Dwa lata temu (drugiego dnia) miałem jeszcze czas pod koniec na sprawdzenie wyników i oddanie kartki sporo przed czasem. Tutaj było to niemożliwe. Z pośpiechu popełniłem kilka banalnych błędów... niestety.
Co do trudności zadań to chyba była trochę wyższa niż ostatnio.

Tradycyjnie chętnie posłucham pomysłów na rozwiązanie niektórych zadań 8-)
Z pierwszego dnia 14, 18
Z dnia drugiego 16, 18

No i gratulacje dla Sylwka za zajęcie 2 miejsca, niewiele zabrakło do zwycięstwa!
Góra
Mężczyzna Offline
PostNapisane: 29 maja 2018, o 02:17 
Gość Specjalny
Avatar użytkownika

Posty: 2674
Lokalizacja: Warszawa
A dziękuję bardzo! Ja tym bardziej gratuluję zwycięstwa w HC Marcin88, który już raczej dawno tu nie zagląda ;)

Pochwalę się przy okazji, że moja uczennica wygrała w tym roku jedną z kategorii robiąc wszystkie swoje zadania bez błędu. W sumie moja informacja i tak jest jednoznaczna, bo tylko w jednej z kategorii wygrała w tym roku płeć piękna - chodzi o kategorię gimnazjalistów (C2) ;) . To było dość ciekawe - w TOP 10 było tam 9 chłopaków i 1 dziewczyna :D

W tym roku miałem poczucie konieczności mocniejszego "pałowania" niż zwykle. Brakowało mi więcej zadań na wymyślenie czegoś niestandardowego. Za dużo było zadań na bycie człowiekiem-kalkulatorem. W oba dni kończyłem ostatnie swoje zadanie w ostatniej minucie, więc z czasem też było na styk.

Skrzypu, bardzo szkicowo:

1) Zadanie 14 z 1. dnia - najpierw skracamy licznik i mianownik ułamka jak tylko się da, następnie dowodzimy, że (10^9-1) musi być dzielnikiem mianownika oraz że mianownik nie ma żadnej wcześniejszej wielokrotności typu 10^k-1. To po to, aby okres był dokładnie 9-cyfrowy.

2) Zadanie 18 z 1. dnia - trzeba było szukać i zgadywać pośród małych trójek pitagorejskich ;)

3) Zadanie 16 z 2. dnia - zrobiłem trójkąt równoramienny o podstawie 6 (punkty (0,0), (6,0)) oraz wysokości 6 (3-ci wierzchołek (3,6)).

I spałowałem analitycznie ten szczególny przypadek. Wynik to różnica \frac{3}{14} i \frac{3}{35}, czyli różnica pola trójkąta zawierającego nasz obszar i mały górny trójkącik oraz pola małego górnego trójkącika. Że to dla dowolnego innego trójkąta wyjdzie tyle samo - to można zrobić korzystając z przekształceń afinicznych, więc wystarczy tylko spałować 1 przykład. Chętnie poznam inne, znacznie ładniejsze rozwiązanie.

4) Zadanie 18 z 2. dnia - już kilka lat temu było coś podobnego na GMIL-u, nawet opisywałem rozwiązanie. W skrócie - wzór Herona i żeby nie pałować, to sprowadzić wszystko do równania Pella dla D=3. Odsyłam: 228161.htm#p847205

Co ciekawe, to zadanie z GMIL-a sprzed 7 lat przypomniałem sobie jakieś 10-20 dni przed zawodami, robiąc zupełnie inne zadanie. W ramach nauki do olimpiady zadałem ten problem do rozwiązania jednej osobie (co jeszcze bardziej ciekawe, zadałem to właśnie tej osobie, o której już pisałem w tym poście), a następnie dokładnie pogadaliśmy o tym na zajęciach. Gdy w tym roku zobaczyłem treść mówiącą o trójkącie mającym boki będącymi trzema kolejnymi liczbami naturalnymi, wręcz pamiętałem konkretne nawiasy w tym wzorze Herona ;)
Góra
Mężczyzna Offline
PostNapisane: 29 maja 2018, o 07:26 
Użytkownik

Posty: 640
Lokalizacja: Polska
Zadanie 18 z 1-go dnia - rozwiązanie z twierdzenia Kartezjusza.
Góra
Mężczyzna Offline
PostNapisane: 29 maja 2018, o 20:21 
Gość Specjalny

Posty: 1144
Lokalizacja: Kraków
Sylwek

Co to 18ego z dnia pierwszego..
Gdzie tam są trójkąty prostokątne o bokach całkowitoliczbowych? Jakoś nie mogę rozkręcić tego po Twoim wprowadzeniu.

W zadaniu z tortem, po ustaleniu że dla każdego trójkąta wynik będzie ten sam wsadziłem to w układ współrzędnych. Trójkąt prostokątny o wierzchołkach (-b,0), (b,0), (0,b). Wtedy wydaje mi się że szybciej dojdziesz do wyniku (cięcia wychodzą z wierzchołków przeciwprostokątnej).

Co do 18ego z dnia drugiego. Niestety nie znałem wzoru Herona. Próbowałem ograniczać przypadki na podstawie trójek pitagorejskich. Ale dla boku długości >50 robiło się już ciężko...
Góra
Mężczyzna Offline
PostNapisane: 29 maja 2018, o 21:27 
Użytkownik

Posty: 2
Lokalizacja: Zamość
Jeśli chodzi o 16 zadanie z 2. dnia, to można je rozwiązać w ten sposób.

https://drive.google.com/file/d/1pe8Xm0 ... sp=sharing

Zgadnie z oznaczeniami na rysunku, gdzie
KN||OG||FP \wedge AG||GP
\\ \\
P_{\Delta ABC} = 1
\\ \\
\Delta DGN \sim \Delta ANC
\\
\frac{|DG|}{|AC|} = \frac{2}{3} \Rightarrow  \frac{|AN|}{|NG|} = \frac{3}{2}  \Rightarrow  P_{\Delta ANC} = P_{\Delta AGC} \cdot \frac{3}{3+2} = \frac{1}{3} \cdot \frac{3}{5} = \frac{1}{5}
\\ \\
\Delta FPG \sim \Delta NGC
\\
|CG| = |GF|  \Rightarrow  |NG| = |GP|
\\
P_{\Delta AFP} = P_{\Delta AFG} \cdot  \frac{3+2+2}{3+2} = \frac{1}{3} \cdot \frac{7}{5} = \frac{7}{15}   
\\ \\
\Delta AKN \sim \Delta AFP
\\
P_{\Delta AKN} = P_{\Delta AFP} \cdot (\frac{|AN|}{|AP|})^2 = \frac{7}{15} \cdot (\frac{3}{3+2+2})^2 = \frac{7}{15} \cdot \frac{3^2}{7^2} = \frac{3}{35}

Analogicznie możemy udowodnić, że P_{\Delta NMC} = \frac{3}{35}
\\ \\
\Delta EFL \sim \Delta ALC
\\
\frac{|EF|}{|AC|} = \frac{1}{3}  \Rightarrow  \frac{|EL|}{|LC|} = \frac{1}{3}  \Rightarrow  P_{\Delta ALC} = P_{\Delta AEC} \cdot \frac{3}{1+3} = \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}
\\ \\
P_{KLMN} = P_{\Delta ALC} - ( P_{\Delta ANC} + P_{\Delta AKN} + P_{\Delta NMC} ) = \frac{1}{2} - (\frac{1}{5} + 2  \cdot \frac{3}{35}) = \frac{1}{2} - \frac{13}{35} = \frac{9}{70}
Góra
Mężczyzna Offline
PostNapisane: 30 maja 2018, o 11:04 
Gość Specjalny
Avatar użytkownika

Posty: 2674
Lokalizacja: Warszawa
Dzięki za to rozwiązanie :)

Skrzypu, poprowadź wysokość trójkąta równoramiennego. Kąt prosty, który powstanie będzie kątem prostym w dwóch trójkątach prostokątnych, jeden jest połówką wielkiego trójkąta równoramiennego, drugi zawiera się wewnątrz niego i ma ten sam kąt prosty.

Ja tego nie zrobiłem i jeszcze nie siadłem nad nim, ale najpierw szukaj wśród trójkątów o całkowitej długości poprowadzonej wysokości.
Góra
Mężczyzna Offline
PostNapisane: 18 cze 2018, o 13:35 
Gość Specjalny
Avatar użytkownika

Posty: 2674
Lokalizacja: Warszawa
W końcu znalazłem chwilę, żeby przysiąść.

Zadanie nr 18 z 1. dnia - chodzi o to, że...
Ukryta treść:    


Zadanie nr 16 z 2. dnia - weźmy rysunek z zadania, oznaczmy lewy dolny wierzchołek przez A, itp., czyli skorzystam z powyższych oznaczeń zaproponowanych przez PawLew ale nie będę tworzył czerwonych lini. Dalej...
Ukryta treść:    
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 38 ]  Przejdź na stronę Poprzednia strona  1, 2, 3


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Kangur 2017 kategoria Beniamin  Hacper  1
 GMIL - edycja 2015  Sylwek  4
 Kangur 2018 Student  11896  8
 Alfik 2017 PG2/PG3  19Pablo99  0
 GMiL 2008/09  Sylwek  269
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl