szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 17 mar 2018, o 14:36 
Użytkownik

Posty: 14
Lokalizacja: Kraków
Witam ponownie zabrałem się za bardziej złożone zdanie i mam kilka pytań.
Nie wiem czy już na samym początku nie popełniłem błędu wybierając to prawo zastępowania implikacji.
\left( p \Rightarrow q\right)  \Leftrightarrow \left(  \neg p \vee q\right) przez to cały czas mam alternatywę w głównym członie.

\left[ \left( p \Rightarrow q\right)  \wedge  \left( r \Rightarrow q\right)  \right]  \Rightarrow  \left[ \left(  \neg q \vee  \neg q\right)  \Rightarrow \left(  \neg p \vee  \neg r\right)  \right] \\ 
 \neg \left[ \left( p \Rightarrow q\right)  \wedge  \left( r \Rightarrow q\right)  \right]  \vee\left[ \left(  \neg q \vee  \neg q\right)  \Rightarrow \left(  \neg p \vee  \neg r\right)  \right] \\ 
\neg \left[ \left( p \Rightarrow q\right)  \wedge  \left( r \Rightarrow q\right)  \right]  \vee \left[ \left(  \neg q\right)  \Rightarrow \left(  \neg p \vee  \neg r\right)  \right] \\
 \neg \left[ \left(  \neg p \vee q\right)  \wedge \left(  \neg r \vee q\right)  \right]  \vee \left[  \neg \left(  \neg q\right)  \vee \left(  \neg p  \vee   \neg r\right)  \right] \\
\left[  \neg \left(  \neg p \vee q\right)  \vee   \neg \left(  \neg r \vee q\right)   \right]  \vee  \left[ q \vee \left(  \neg p \vee  \neg r\right) \right] \\ 
\left[ \left(  \neg  \neg p \wedge  \neg q\right)  \vee \left(  \neg  \neg r \wedge  \neg q\right)  \right]  \vee  \left[ q \vee  \neg p  \vee  \neg r\right]\\
\left[ \left( p \wedge  \neg q\right)  \vee \left( r \wedge  \neg q\right)  \right] \vee  \left[ q \vee  \neg p  \vee  \neg r\right] \\
\left[ \left( \left( p  \wedge   \neg q\right)  \vee r \right)  \wedge \left( \left( p \wedge  \neg q\right)  \vee  \neg q \right)  \right]  \vee \left[ q \vee  \neg p  \vee  \neg r\right] \\
\left[ \left( \left( p \vee r\right)   \wedge \left(  \neg q \vee r\right) \right) \wedge \left( \left( p \vee  \neg q\right) \wedge \left(  \neg q \vee  \neg q\right)  \right) \right] \vee \left[ q \vee  \neg p  \vee  \neg r\right] \\
\left[ \left( \left( p \vee r\right)   \wedge \left(  \neg q \vee r\right) \right) \wedge \left( \left( p \vee  \neg q\right) \wedge \left(  \neg q\right)  \right) \right] \vee \left[ q \vee  \neg p  \vee  \neg r\right] \\
Zastanawiam się co dalej w jaki sposób mogę pozbyć się głównej alternatywy. Z góry dziękuje za nakierowanie.
Góra
Mężczyzna Offline
PostNapisane: 21 mar 2018, o 23:24 
Administrator

Posty: 22891
Lokalizacja: Wrocław
Nie chce mi się sprawdzać poprawności przekształceń, ale musisz na końcu zastosować rozdzielność alternatywy względem koniunkcji. Żeby było prościej, to w nawiasie kwadratowym masz koniunkcję czterech członów, czyli

(\alpha\land \beta\land \gamma\land \delta)\lor\phi \Leftrightarrow (\alpha\lor\phi)\land (\beta\lor\phi)\land (\gamma\lor\phi)\land (\delta\lor\phi)

JK
Góra
Mężczyzna Offline
PostNapisane: 22 mar 2018, o 00:07 
Użytkownik

Posty: 14
Lokalizacja: Kraków
Czyli następująca postać.
\left( \left( p \vee r\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right)  \wedge
\left( \left(  \neg q \vee r\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right) \wedge
\left( \left( p \vee q\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right) \wedge
\left( \left(  \neg q \right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right)

Podobno można sprawdzić rozwiązanie za pomocą wolfram alpha. Próbowałem i niestety nie jestem w stanie sprawdzić całego wyrażenia.
Zapisałem w następujący sposób.
Kod:
1
{(p=>q) && (r=>q)}=>{(!q || !q) =>(!p || !r)}

Jednak mogę sprawdzić jedną stronę wyrażenia jak i drugą.
Kod:
1
(p=>q) && (r=>q)

Kod:
1
(!q || !q) =>(!p || !r)


Wiem że dość mocno zawracam głowę ale chciałbym opanować rozwiązywanie nawet tak długich wyrażeń.
Góra
Mężczyzna Offline
PostNapisane: 22 mar 2018, o 00:10 
Administrator

Posty: 22891
Lokalizacja: Wrocław
Tutanchamon napisał(a):
Czyli następująca postać.
\left( \left( p \vee r\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right)  \wedge
\left( \left(  \neg q \vee r\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right) \wedge
\left( \left( p \vee q\right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right) \wedge
\left( \left(  \neg q \right)  \vee \left( q \vee  \neg q \vee  \neg r\right)  \right)

No nie. Skąd wziąłeś q \vee \neg q \vee \neg r? Poza tym warto poupraszczać.

JK
Góra
Mężczyzna Offline
PostNapisane: 22 mar 2018, o 01:15 
Użytkownik

Posty: 14
Lokalizacja: Kraków
\left( \left( p \vee r\right) \vee \left( q \vee \neg p \vee \neg r\right) \right) \wedge \left( \left( \neg q \vee r\right) \vee \left( q \vee \neg p \vee \neg r\right) \right) \wedge \left( \left( p \vee q\right) \vee \left( q \vee \neg p \vee \neg r\right) \right) \wedge \left( \left( \neg q \right) \vee \left( q \vee \neg q \vee \neg r\right) \right)

Wstawiłem q zamiast p.
Góra
Mężczyzna Offline
PostNapisane: 22 mar 2018, o 02:31 
Administrator

Posty: 22891
Lokalizacja: Wrocław
Nie poprawiłeś jeszcze ostatniego nawiasu.

Jak poprawisz i poupraszczasz, to zauważysz, że to zdanie jest po prostu tautologią, więc jego CNF jest w zasadzie "prawie jakakolwiek", np. p\lor\neg p...

JK
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Sprowadzenie wyrażenia do postaci koniuktywno-alternatywnej.  Tutanchamon  4
 Formuła w postaci kpn  MagusDrDee  2
 Zapisz w postaci formalnej zdanie z arytmetyki  donblack  0
 formuły w koniunkcyjnej postaci normalnej..  raphel  0
 Przekształcenie do postaci normalnej - krótkie pytanie  kylercopeland  8
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl