szukanie zaawansowane
 [ Posty: 2 ] 
Autor Wiadomość
Kobieta Offline
PostNapisane: 12 sie 2018, o 16:07 
Użytkownik

Posty: 17
Lokalizacja: Bydgoszcz
Witam, przygotowując zadania do matury z jednym kompletnie sobie nie radzę. W tyle książki mam odpowiedzi, ale chciałabym zrozumieć jak to stwierdzono.
Polecenie:
Dane jest równanie \frac{x+m^2}{x^2-m^2} =0
z niewiadomą x.
Oceń prawdziwość zdania.
1. Równanie nie ma rozwiązań tylko dla m=0.
2. Równanie ma dokładnie jedno rozwiązanie dla m należącego do przedziału \RR\backslash\{-1,0,1\}
3. Istnieje taka wartość m, dla której równanie ma dokładnie dwa rozwiązania.
Odpowiedzi to F,P,F.
Próbowałam przekształcać równanie lecz nie wychodzi mi żadna logiczna całość.
Proszę o pomoc :)
Góra
Mężczyzna Offline
PostNapisane: 12 sie 2018, o 16:15 
Użytkownik
Avatar użytkownika

Posty: 6507
Licznik się zeruje dla x=-m^2.
Jednak musisz wziąć pod uwagę istnienie tego ułamka:
x^2-m^2 \neq 0
także dla miejsca zerowego licznika, co daje:
(-m^2)^2-m^2 \neq 0\\
m^2(m-1)(m+1) \neq 0
A stąd wynika prawdziwość zdania 2.


Prawidłowy kod:
Kod:
1
[tex] \frac{x+m^2}{x^2-m^2}=0 [/tex]
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 2 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Równania i nierówności niewymierne - informacje  Anonymous  1
 Nierówności wymierne  Tama  2
 nierównosci - zadania  comix  7
 Równanie wymierne - zadanie 2  Monster  2
 Równanie wymierne i nierówność  Monster  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl