szukanie zaawansowane
 [ Posty: 9 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 16 lis 2018, o 20:12 
Użytkownik

Posty: 4
Lokalizacja: Wrocław
1. Walec miedziany (v=0,35) o średnicy d=4 cm włożono do otworu o średnicy wewnętrznej d_0{} =4,001 cm w nieodkształcalnym korpusie, a następnie poddano działaniu siły ściskającej P=300 kN. Obliczyć ciśnienie p, jakie wywiera walec na ściany otworu, jeśli dla miedzi E=1*10^5 MPa.
Odpowiedź: p=91 MPa.
https://scr.hu/B9lVBWm

2. Obliczyć wymiary złącza dwóch belek drewnianych o przekroju kwadratowym przeznaczonych do pracy pod obciążeniem P=40 kN, jeżeli k_t{} =10 MPa, k_d{} =8 MPa, zaś k_r{} =1 MPa.
Odpowiedź: a=11,4 cm; b=4,4 cm; c=35,1 cm.
https://scr.hu/22OjqnJ

Proszę o jakąkolwiek pomoc, bo nie wiem jak rozwiązać te zadania, z żadnych moich założeń nie wychodzą te podane wyniki
Góra
Mężczyzna Offline
PostNapisane: 17 lis 2018, o 11:44 
Użytkownik

Posty: 5993
Lokalizacja: Staszów
Zatem proszę wypisać te założenia, pokazać rozwiązania wykonene przy ich przyjęciu. Zawsze znajdzię tu ktoś, kto będzie chętnym dać podpowiedź poprawnego sposobu rozwiązania.
Góra
Mężczyzna Offline
PostNapisane: 17 lis 2018, o 14:47 
Użytkownik

Posty: 4
Lokalizacja: Wrocław
Zatem w 1. zadaniu wypisałem, że wydłużenie względne względem osi Y (prawo, lewo) wynosi \frac{ d_{0} -d}{d}, a względem osi Z (góra, dół) wynosi 0. Następnie przyjąłem, że naprężenie względem osi Y jest równe temu ciśnieniu p, które mamy obliczyć. Zapisałem, że naprężenia względem osi Z są równe \frac{P}{ \pi \cdot (0,5d)^{2}}. I korzystając z prawa Hooke'a obliczyłem \sigma_{y}


A w 2. zadaniu próbowałem przyjąć, że naprężenia tnące będą występować na przekrojach a \cdot c, dociskające na przekroju a \cdot b, ale rozciągających nie potrafię określić i bez tego zadania nie obliczę.

To tyle co udało mi się wymyślić do tych zadań, dlatego prosiłbym o pomoc, bo kolokwium się zbliża :(
Góra
Mężczyzna Offline
PostNapisane: 17 lis 2018, o 18:55 
Użytkownik

Posty: 5993
Lokalizacja: Staszów
Zadanie 1.

Zauważamy, że w połączeniu jest wcisk ujemny, czyli luz, malutki ale jednak jest.
Nim ściskany walec dotknie poboczną powierzchnią walcową powierzchni otworu, trzeba wywrzeć na niego nacisk siła osiową, taką, jaka wynika z równania odkształceń,

\varepsilon'_2 =  \frac{0,001}{40}   = -\nu  \frac{P'}{ \pi R^2 \cdot E}
gdzie : \pi R^2 , jest polem przekroju poprzecznego miedzianego walca, ale dla łatwiejszega zapisu i czytelnści użyty został taki napis.

Siłą P'' równą różnicy
P'' = P - P' = 30 \ kN - P' będzie powodowane odkształcenie "poprzeczne" miedzianego walca wywołujące nacisk na powierzchnię otworu wg wzoru:

\varepsilon''  \cdot E = \sigma = p  \  N/m^2

gdzie: \varepsilon '' = \nu \cdot  \frac{P''}{ \pi R^2 \cdot E}

co w wyniku daje (spodziewany) wzór

p= \nu  \frac{P''}{ \pi R^2 } \ N/m^2

-- 17 lis 2018, o 20:06 --

Zadanie 2.
Jednocześnie muszą być spełnione trzy nierówności:

1. z warunku na rozciąganie: a \cdot  \frac{a-b}{2} \cdot k_r  \ge  P ; ...........(1)

2. z warunku na docisk zaczepów: a \cdot b \cdot k_d  \ge  P ; .............(2)

3. z warunku na ścinanie zaczepów: a \cdot c \cdot k_t  \ge  P ; ............(3)

Trzy niewiadome wymiary a,   b,   c, i trzy nierówności, któryvch rozwiązanie jest odpowiedzią na zadane polecenie.
Góra
Mężczyzna Offline
PostNapisane: 17 lis 2018, o 23:51 
Użytkownik

Posty: 4
Lokalizacja: Wrocław
Przepraszam, ale naprawdę nie rozumiem skąd się bierze ta różnica sił w 1. zadaniu. Mógłby Pan jeszcze to trochę dokładniej wytłumaczyć? Dziękuję za pomoc i przepraszam za zabranie czasu :D
A tak poza tym, wynik nie wychodzi poprawny w tym zadaniu :/
Góra
Mężczyzna Offline
PostNapisane: 18 lis 2018, o 00:37 
Użytkownik

Posty: 5993
Lokalizacja: Staszów
By skasować luz jaki tam jest między otworem a prętem trzeba ten trzpień "wstępnie ścisnąć" wywierając siłę do tego niezbędną. Pozostała jej część będzie chcieć spęczać trzpień, a że nie będzie on mógł powiększać średnicy to będzie wywierał nacisk na ścianę otworu, który będzie go ściskał.
Proszę wyobrazić sobie sytuację taką, że luz między otworem a trzpieniem jest akurat taki, że trzpień ściśnięty tą siłą (300 kN) powiększył średnicę o tyle, że tylko dotknął ściany otworu nie naciskając na nią. Jakie ciśnienie wywiera on na ścianę otworu? Z jaką siłą na nią ciśnie na ścianę otworu i dla czego z taką choć naciskany jest znaczną siłą?

Lub może taką:
Mamy trzpień i płytę z otworem a między nimi luz. Mamy też odważniki, takie obciążniki, w części drobno stopniowane o łącznym ciężarze Q=300 kN. Aby trzpień mógł dotknąć powierzchni otworu kasujemy luz przez spęczenie trzpienia obciążając go częścią posiadanych odważników (z owej 300 kN sterty). Pozostałą częścią odważników naciskamy na trzpień kiedy będzie on już w styczności z otworem. Czyli ową pozostała częścią obciążenia.
Góra
Mężczyzna Offline
PostNapisane: 18 lis 2018, o 11:58 
Użytkownik

Posty: 4
Lokalizacja: Wrocław
Już chyba wszystko rozumiem :)
Bardzo dziękuję Panu za pomoc! Może jednak uda się napisać ładnie to kolokwium :D
Góra
Mężczyzna Offline
PostNapisane: 18 lis 2018, o 14:19 
Użytkownik
Avatar użytkownika

Posty: 2153
Lokalizacja: Nowy Targ
Propozycja rozwikłania problemu w oparciu oprawo Hooke'a dla przestrzennego- trójosiowego stanu naprężeń.
.........................................
Przy osiowym ściskaniu walca siłą P(oś z), walec sie poszerza w kierunku poprzecznym(x,y) o wartość 0,001cm i wywiera nacisk na ścianki nieodkształcalnego korpusu.
1. Zależność między odkształceniami, a naprężeniami- w kierunku osi x:
\epsilon _{x}= \frac{-\sigma _{x}+\nu \cdot \sigma _{y} +\nu \cdot \sigma _{z}}{E}, (1)
/Przyjęto naprężenia ściskajace ze znakiem minus!/
Ponadto w kierunku poprzecznym zajdą równości;
\epsilon _{x}= \epsilon _{y},   \sigma _{x}=\sigma _{y}, (2)
Teraz odkształcenie
\epsilon _{x}= \frac{-\sigma _{x}+\nu \cdot \sigma _{x} +\nu \cdot \sigma _{z}}{E}, (3)
2. Szukane naprężenie( ciśnienie) po przekształceniu rów.(3):

\sigma _{x}=\sigma _{y}= \frac{\epsilon _{x} \cdot E-\nu \cdot \sigma _{z}  }{\nu-1}, MPa, (4)

Gdzie
\epsilon _{x}= \frac{d _{o}-d }{d}
\sigma _{z}[MPa]= \frac{P}{S}=  \frac{4 \cdot 10 \cdot P[kN]}{ \pi d ^{2} [cm ^{2} ] }  }
S[cm ^{2}] = \frac{ \pi d ^{2} }{4}- pole przekroju poprzecznego walca z Cu
/ Utrzymano jednostki jak w danych do zadania/

Po obl. otrzymano wartość:90,15 MPa
Góra
Mężczyzna Offline
PostNapisane: 18 lis 2018, o 21:49 
Użytkownik

Posty: 5993
Lokalizacja: Staszów
Jeżeli zauważyć, że

\Delta d = \nu \cdot d  \frac{\Delta L}{L} ,
( vide np. https://pl.wikipedia.org/wiki/Liczba_Poissona)

I stąd, że
\Delta d = \varepsilon_r \cdot d  =  \frac{\sigma_r}{E} d

\frac{\Delta d}{d}=  \frac{\sigma_r}{E} = \nu  \frac{\Delta L}{L} = \nu  \frac{\varepsilon_n \cdot  L}{L} = \nu  \frac{\sigma_n }{E}

gdzie \sigma_r jest naprężeniem radialnym, wzdłuż promienia.

czyli: \frac{\sigma_r}{E} = \nu  \frac{\sigma_n }{E}

\sigma_r = \nu  \cdot \sigma_n = \nu  \frac{P}{2 \pi R^2}
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 9 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Zginanie belek i ścinanie  tomi140  3
 ścinanie pręta - zadanie 2  amnon  2
 Ścinanie techniczne cz.2  lesnydzik  2
 Obliczanie naprężeń MES dla różnych stanów skupienia  Mariusz0987  0
 wyznaczanie maksymalnych naprężeń - figura płaska  ser-x  0
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl