szukanie zaawansowane
 [ Posty: 21 ]  Przejdź na stronę 1, 2  Następna strona
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 17:39 
Użytkownik

Posty: 46
Lokalizacja: UMK Toruń
Jak wyprowadzic wzory na momenty bezwladnosci


-preta z osia obrotu prostopadla do niego na jego koncu
-preta z osia obrotu prostopadla do niego na jego srodku
-walca pustego bez denkek (rury) z osia obrotu przechodzaca przez srodek rury rownolegle do jej scian
-walca pustego z denkami z osia obrotu przechodzaca przez srodek denek
-sfery z osia obrotu przechodzaca pzez jej srodek

uzywajac caleczek oznaczonych? z gory dzieki
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 20:14 
Użytkownik
Avatar użytkownika

Posty: 73
Lokalizacja: Białystok
Pręta z osią obrotu prostopadłą do niego na jego końcu

Korzystasz tu z Twierdzenie Steinera, które brzmi I=I_{0}+md^{2}, gdzie I_{0} to moment bezwładności względem osi obrotu przechodzącej przez środek masy ciała, a d odległość osi obrotu równoległej do osi obrotu w środku masy.

Wzór na I_{0} pręta to: \frac{ml^{2}}{12}
więc:

I=\frac{ml^{2}}{2} + \frac{ml^{2}}{4} bo d=\frac{l}{2}

Pręta z osią obrotu prostopadłą do niego na jego środku

Jak dokładnie wyprowadzić to nie powiem ale ten wzór ma postać:
: I_{0}=\frac{ml^{2}}{12}

Walca pustego bez denek (rury) z osią obrotu przechodzącą przez środek rury równolegle do jej ścian

cienkościenna: : I_{0}=mR^{2}
o różnych promieniach: I_{0}=\frac{m(R^{2}+r^{2})}{2}

Walca pustego z denkami z osią obrotu przechodzącą przez środek denek
I_{0}=\frac{mR^{2}}{2}

Sfery z osią obrotu przechodzącą przez jej środek

\frac{2mR^{2}}{3}
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 21:01 
Użytkownik

Posty: 46
Lokalizacja: UMK Toruń
Wzory juz znam. Sa zreszta nawet na wikipedii :D Potrzebne mi wyprowadzenie. dla przykladu podam dla walca pelnego:

\rho - gestosc

V - objetosc

m - masa

h - wysokosc


\int  r_{i} ^{2} dm _{i}=\int r ^{2} \rho dV=

=\rho \int r^{2} dr r d\phi dh=\rho \int_{0}^{r} r^{3} dr  \int_{0}^{2\Pi} d\phi  \int_{0}^{h} dh=\frac{m}{2\Pi r^{2}h}\frac{1}{4} r   ^{4}  2\Pi  h=\frac{1}{2}mr  ^{2}
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 21:13 
Użytkownik

Posty: 3903
Lokalizacja: Warszawa
No to kulę pełną dzielimy na walce, których moment bezwładności znamy:
\rho = \frac{M}{\frac{4}{3} \pi R^3} \\
r = \sqrt{R^2 - x^2} \\
2  \int_{0}^{R} \rho \pi r^2 \cdot \frac{1}{2} r^2 dx = \frac{M}{\frac{4}{3} R^3}  \int_{0}^{R} R^4 - 2R^2 \ x^2 + x^4 dx = \frac{M}{\frac{4}{3} R^3} (R^5 - \frac{2R^5}{3} + \frac{R^5}{5}) = \frac{3M}{4R^3} \frac{8R^5}{15} = \frac{2}{5}MR^2
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 21:19 
Użytkownik
Avatar użytkownika

Posty: 73
Lokalizacja: Białystok
Na jednorodny pręt wględem osi prostopadłej do pręta i przechodzącej przez jego środek masy

Przyjmijmy, że wzór na moment bezwładności pręta względem osi przechodzącej przez jego koniec ma postać:
I=kml^{2} gdzie k to bezwymiarowy współczynnik (1.0).

Moment bezwładności I_{0} pręta względem osi przechodzącej przez środek masy można przedstawić jako sumę momentów bezwładności jego połówek względem osi przechodzących przez ich końce:
I_{0}=\frac{2km}{2}(\frac{l}{2})^{2}(1.1)
Ale zgodnie z twierdzeniem Steinera:

I=m(\frac{l}{2})^{2}+I_{0}=\frac{ml^{2}}{4}+\frac{kml^{2}}{4}(1.2)

Przyrównując prawe strony równości (1.0) i (1.2), mamy, że k=\frac{1+k}{4}\Rightarrowk=\frac{1}{3}
Korzystając ze wzoru (1.1). otrzymujemy, że moment bezwładności pręta jest wyrażony za pomocą wzoru:
I_{0}=\frac{ml^{2}}{12}
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 22:29 
Użytkownik

Posty: 4
Lokalizacja: Torun
pret
dmi=(m/l)*dV
2*\int\limits_{0}^{l/2}r^{2}*(m/l)*dv
to jest z osia wsrodku jak chce z osia na koncu to granice bede od 0 do l i bez 2 na poczatku
Walec z denkami moment bezwladnosci walca+2*moment bezwladnosci denek czyli okregu
Góra
Mężczyzna Offline
PostNapisane: 24 sty 2008, o 22:31 
Użytkownik

Posty: 3903
Lokalizacja: Warszawa
A jednak o sferę było pytanie. Zatem tak:
\sigma = \frac{M}{4\pi R^2} \\
r = Rcos\alpha \\
dS = 2\pi r \ R d\alpha \\
I = 2  \int_{0}^{\frac{\pi}{2}} \sigma 2 \pi R cos\alpha \cdot R^2 cos^2\alpha R d\alpha = MR^2 \int_{0}^{\frac{\pi}{2}} cos^{3}\alpha d\alpha \\
t = sin\alpha \ \ dt = cos\alpha d\alpha \\
I = MR^2 (sin\frac{\pi}{2} - \frac{sin^{3}\frac{\pi}{2}}{3}) = \frac{2}{3} MR^2
Góra
Kobieta Offline
PostNapisane: 20 mar 2008, o 13:29 
Użytkownik

Posty: 68
Lokalizacja: Gdynia
Czy mógłbyś ktoś pomóc mi wyprowadzić wzór na moment bezwładności rury? Wiem, jaki będzie wzór końcowy, ale nie potrafię go wyprowadzić.
Góra
Mężczyzna Offline
PostNapisane: 20 mar 2008, o 13:33 
Użytkownik

Posty: 3903
Lokalizacja: Warszawa
Rury w sensie powierzchni bocznej cienkościennego walca? Jeśli tak to zauważ, że każdy punkt jest odległy od osi o R stąd ten moment bezwładności to:
I = MR^2
Góra
Kobieta Offline
PostNapisane: 20 mar 2008, o 13:41 
Użytkownik

Posty: 68
Lokalizacja: Gdynia
Rzecz w tym, że chodzi o rurę grubościenną.
Góra
Mężczyzna Offline
PostNapisane: 20 mar 2008, o 13:49 
Użytkownik

Posty: 3903
Lokalizacja: Warszawa
Czyli o to co jest zamknięte dwoma powierzchniami walca o promieniach R_1 \  i \  R_2, jeśli dobrze rozumiem. No to najpierw gęstość:
\rho = \frac{M}{\pi (R_2^2 - R_1^2) H} \\
dM = \rho dV \\
dV = 2\pi r H dr \\
I = \int_{R_1}^{R_2} r^2 \rho dV = \frac{2M}{R_2^2 - R_1^2}\int_{R_1}^{R_2} r^3 dr = \frac{2M}{R_2^2 - R_1^2} \frac{1}{4} (R_2^4 - R_1^4) \\  = \frac{M}{2(R_2^2 - R_1^2)} (R_2^2 + R_1^2)(R_2^2 - R_1^2) = \frac{M(R_1^2 + R_2^2)}{2}
Góra
Kobieta Offline
PostNapisane: 20 mar 2008, o 15:16 
Użytkownik

Posty: 68
Lokalizacja: Gdynia
Rozumiem, dziękuję.
Góra
Mężczyzna Offline
PostNapisane: 26 kwi 2008, o 15:20 
Użytkownik

Posty: 99
Lokalizacja: Wrocław
Jumparround napisał(a):
Wzory juz znam. Sa zreszta nawet na wikipedii :D Potrzebne mi wyprowadzenie. dla przykladu podam dla walca pelnego:

\rho - gestosc

V - objetosc

m - masa

h - wysokosc


\int  r_{i} ^{2} dm _{i}=\int r ^{2} \rho dV=

=\rho \int r^{2} dr r d\phi dh=\rho \int_{0}^{r} r^{3} dr  \int_{0}^{2\Pi} d\phi  \int_{0}^{h} dh=\frac{m}{2\Pi r^{2}h}\frac{1}{4} r   ^{4}  2\Pi  h=\frac{1}{2}mr  ^{2}



wiek ktos czy da sie to wyprowadzic nie uzywajac calek potrojnych?
Góra
Mężczyzna Offline
PostNapisane: 26 kwi 2008, o 15:26 
Użytkownik

Posty: 3903
Lokalizacja: Warszawa
Pewnie, że się da. Walec możemy podzielić na nieskończoną ilość walców cienkościennych. Gęstość walca to:
\rho = \frac{M}{\pi R^2 h}
Zatem masa walca cienkościennego to:
dm = \frac{M}{\pi R^2 h} \cdot 2 \pi r dr h = \frac{2M}{R^2 } r dr
Z tego moment bezwładności takiego walca to:
dI = r^2 dm = \frac{2M}{R^2} r^3 dr
Całkowity moment bezwładności możemy znaleźć sumując momenty bezwładności cienkościennych walców:
I = \int_{0}^{R} \frac{2M}{R^2} r^3 dr = \frac{2M}{R^2} \int_{0}^{R} r^3 dr = \frac{2M}{R^2} \cdot \frac{R^4}{4} = \frac{1}{2} MR^2
Góra
Mężczyzna Offline
PostNapisane: 26 kwi 2008, o 15:59 
Użytkownik

Posty: 99
Lokalizacja: Wrocław
dzienx, powiedz mi jeszcze jak mozesz da sie wyprowadzic dla pretu podobnie, jesli tak to jak?( noga jestem z fizyki i nie rozumie roznicy miedzy pretem a walcem, jak dla mnie to to samo, a wzory inne...)
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 21 ]  Przejdź na stronę 1, 2  Następna strona


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Wyprowadzenie wzoru - zadanie 4  LIBRA  1
 Momenty bezwładności - zadanie 2  weektorm  0
 Moment bezwladnosci okraglego preta.  dragoneak  6
 tensor momentu bezwladnosci  Justyneczka  2
 Momenty sił - walec i stopień  hubert1011  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl