szukanie zaawansowane
 [ Posty: 13 ] 
Autor Wiadomość
PostNapisane: 12 maja 2004, o 21:47 
Użytkownik
Zna może ktoś 9 wzorów na pole trójkąta ?
Prosze o odpowiedz !
Góra
Kobieta Offline
PostNapisane: 19 maja 2004, o 15:37 
Użytkownik
Avatar użytkownika

Posty: 26
Lokalizacja: z zimowej stolicy ;)
Pole trójkąta równobocznego:

P=\frac{a^2\cdot \sqrt{3}}{4}
Góra
PostNapisane: 1 cze 2004, o 11:10 
Użytkownik
Wszystkie oznaczenia są wspólne:

a,b,c - długości boków trójkąta,
\sin{\alpha} - sinus kąta leżącego naprzeciw boku a,

\sin{\beta} - sinus kąta leżącego naprzeciw boku b,

\sin{\gamma} - sinus kąta leżącego naprzeciw boku c,

r - promień okręgu wpisanego w trójkąt,
R- promień okręgu opisanego na trójkącie,

1)
P=\frac{1}{2}\cdot b\cdot c\cdot \sin{\alpha}

P=\frac{1}{2}\cdot a\cdot c\cdot \sin{\beta}

P=\frac{1}{2}\cdot a\cdot b\cdot \sin{\gamma}

2)
P=\frac{1}{2}\cdot a\cdot h

3)
P=p\cdot r, gdzie p=\frac{a+b+c}{2}

4)
P=\frac{a\cdot b\cdot c}{4\cdot R}

5)
P=2\cdot R^2 \cdot \sin{\alpha}\cdot \sin{\beta}\cdot \sin{\gamma}

6)
Wzór Herona:

P=\sqrt{p\cdot (p-a)\cdot (p-b)\cdot (p-c)}

7)
W trójkącie równobocznym:

P=\frac{a^2\cdot \sqrt{3}}{4}

8)
W geometrii analitycznej:

A=(x_a;y_a), B=(x_b;y_b), C=(x_c;y_c) - wierzchołki trójkąta

P=\frac{1}{2}\cdot | d e t \cdot (\vec{AB};\vec{AC})|

gdzie | d e t \cdot (\vec{AB};\vec{AC})| to wartość bezwzględna wyznacznika wektorów.

W tablicach matematycznych są tylko takie wzory.
To jest 8, a co z dziewiątym ?
Góra
Kobieta Offline
PostNapisane: 27 cze 2016, o 19:44 
Użytkownik
Avatar użytkownika

Posty: 455
Lokalizacja: Wrocław
9)
trójkąt prostokątny:

P=r(r+2R)
Góra
Mężczyzna Offline
PostNapisane: 28 cze 2016, o 00:17 
Użytkownik

Posty: 5248
Lokalizacja: Kraków
11) S = \frac{a \rho_b \rho_c}{\rho_b + \rho_c} :)
Góra
Mężczyzna Offline
PostNapisane: 30 cze 2016, o 19:43 
Użytkownik

Posty: 91
Lokalizacja: Siedlce
W swoich notatkach znalazłem jeszcze inny nie wymieniony wzór na pole trójkąta prostokątnego. Nie używam Latexa więc nie przedstawię go w formie wzoru, ale podam potrzebne dane to pewnie ktoś się domyśli i przedstawi w ładnej formie graficznej.
Dane:
Wartość przeciwprostokątnej
wartość wysokości na przeciwprostokątną.
Góra
Mężczyzna Online
PostNapisane: 1 lip 2016, o 02:34 
Użytkownik

Posty: 3004
Lokalizacja: Kraków PL
mol_ksiazkowy napisał(a):
11) S=\frac{a\rho_b\rho_c}{\rho_b+\rho_c}
Z tego wynika, że wysokość trójkąta jest średnią harmoniczną z czego? Co to jest \rho_b i \rho_c ?
Góra
Mężczyzna Offline
PostNapisane: 1 lip 2016, o 06:47 
Gość Specjalny

Posty: 2994
Lokalizacja: Gołąb
Promienie okręgów dopisanych zdaje się.
Góra
Mężczyzna Offline
PostNapisane: 1 lip 2016, o 06:57 
Użytkownik

Posty: 4456
Z bardziej użytkowych :

P  = \frac{1}{ \sqrt{\left(  \frac{1}{h _a } + \frac{1}{h _b }+ \frac{1}{h _c }\right) \left( \frac{1}{h _a } + \frac{1}{h _b }- \frac{1}{h _c }\right) \left( \frac{1}{h _a } - \frac{1}{h _b }+ \frac{1}{h _c }\right) \left( -\frac{1}{h _a } + \frac{1}{h _b }+ \frac{1}{h _c }\right) } }

P= \frac{1}{2} \frac{a^2}{\ctg B +\ctg C} = \frac{1}{2}h^2_a \left( \ctg B +\ctg C\right)
Góra
Mężczyzna Offline
PostNapisane: 1 lip 2016, o 07:37 
Użytkownik

Posty: 5248
Lokalizacja: Kraków
oraz :
S= \frac{1}{4}(a^2+b^2+c^2) \tg(\omega) gdzie \omega jest kątem Brocarda.
\ctg(\omega) = \ctg(\alpha) + \ctg(\beta)+ \ctg(\gamma)

zaś z sinusem: \sin(\omega)  = \frac{2S}{\sqrt{a^2b^2 + b^2c^2+ a^2c^2 }}

Cytuj:
Promienie okręgów dopisanych


Mamy też
\begin{cases} S= \rho_a(p-a) \\S=\rho_b(p-b) \\S=\rho_c(p-c) \end{cases}

S=\sqrt{r \rho_a \rho_b \rho_c }

był też \sqrt{S} = \sqrt{S_1} + \sqrt{S_2} + \sqrt{S_3}
czym są S_1, S_2, S_3 ? :oops:
Góra
Kobieta Offline
PostNapisane: 1 lip 2016, o 12:21 
Użytkownik
Avatar użytkownika

Posty: 455
Lokalizacja: Wrocław
10)
P=\frac{h_a^2}{\sqrt{\left((\frac{h_a}{h_c}+\frac{h_a}{h_b})^2-1\right)\left(1-(\frac{h_a}{h_c}-\frac{h_a}{h_b})^2\right)}}
Góra
Mężczyzna Offline
PostNapisane: 2 lip 2016, o 17:08 
Użytkownik
Avatar użytkownika

Posty: 248
Lokalizacja: Zaragoza
Sprawdź dwie prace:

Baker, M. "A Collection of Formulæ for the Area of a Plane Triangle." Ann. Math. 1, 134-138, 1884,
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 123-124, 1987.

Znajdziesz tam łącznie ponad sto różnych wzorów pozwalających wyznaczyć pole powierzchni trójkąta płaskiego.
Góra
Mężczyzna Offline
PostNapisane: 3 lip 2016, o 09:07 
Użytkownik

Posty: 87
Lokalizacja: Wrocław
Generalnie można poprzekształcać co nieco:)
P= \frac{ S_{g}  ^3 }{4R}

P= \frac{3rS _{a} }{2}
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 13 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Oblicz wysokość trójkąta równoramiennego  Anonymous  1
 Oblicz długośći boków trójkąta. Dany obwód i pole  Anonymous  11
 Oblicz pole trójkąta - podobieństwo trójkątów  Anonymous  2
 Przy jakiej długości boków trójkąta obwód jest najm  Anonymous  5
 Oblicz obwód trójkąta  Jessica  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) ParaRent.com