szukanie zaawansowane
 [ Posty: 2 ] 
Autor Wiadomość
Mężczyzna Offline
PostNapisane: 7 lut 2008, o 21:01 
Użytkownik

Posty: 4
Lokalizacja: zielona góra/wrocław
Witam, mam takie zadanie: wykazać, że dla każdej liczby naturalnej n
a) 6| n^3-n
Góra
Mężczyzna Offline
PostNapisane: 7 lut 2008, o 21:13 
Użytkownik

Posty: 3905
Lokalizacja: Warszawa
Robisz tak:
n^3 - n = n(n^2 -1) = (n-1)n(n+1)
Mamy 3 kolejne liczby naturalne, zatem przynajmniej jedna jest parzysta i przynajmniej jedna jest podzielna przez 3.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 2 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 (3 zadania) Wykaż, że liczby są podzielne przez ...  Anonymous  5
 (4 zadania) Sprawdz podzielność wyrażenia  Anonymous  3
 (4 zadania) Sprawdz podzielność liczb przez 10  Anonymous  4
 Udowodnij twierdzenie. Podzielność liczby przez 11  Anonymous  3
 (3 zadania) Udowodnić podzielność przez 9. Wykazać, że  basia  2
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl