szukanie zaawansowane

Pojęcie funkcji

Pojęcie funkcji

Funkcją lub inaczej, odwzorowaniem zbioru X w zbiór Y nazywamy przyporządkowanie każdemu elementowi ze zbioru X jednego elementu ze zbioru Y.
f: X \to Y



Zbiór X nazywamy dziedziną funkcji f i oznaczamy go jako D_f natomiast elementy dziedziny nazywamy argumentami.

Zbiór Y nazywamy zbiorem wartości funkcji f: X \to Y Zbiór wartości oznaczamy przez f(X) Często można się spotkać także z określeniem przeciwdziedzina funkcji.

Sposoby określania funkcji

Istnieje kilka sposobów określania funkcji.

Graf
Obrazek


Graf dobrze obrazuje samo pojęcie funkcji. Jak widać, różne argumenty mogą przyjmować tą samą wartość (np zarówno -2 i 2 podniesione do kwadratu dadzą wartość 4)

Jednak nie może się zdarzyć, że ten sam argument da dwie różne wartości, a więc poniższy graf nie reprezentuje funkcji
Obrazek


Wzór

Najczęściej stosowanym sposobem określenia funkcji jest wzór. np.

y=ax+b, \hspace{10} x \in \mathbb{R} \\ f(x) = x^2, \hspace{10} x \in \mathbb{R} \\ \vdots


Warto pamiętać o dziedzinie, gdyż bez prawidłowej dziedziny, funkcja nie ma sensu. Chociażby podając wzór na funkcję logarytmiczną log_{x}(x^2-1) musimy podać przedział x'ów dla których funkcja ma sens - jest określona. w tym przypadku

x \in \mathbb{R}^{+} \wedge x^2 - 1 > 0  \Leftrightarrow  x > 1 \vee x< -1  \Leftrightarrow  x \in (-\infty; -1)  \cup (1; +\infty)


Tabelka

Metoda często stosowana we wczesnej fazie nauki matematyki. Przyporządkowanie możemy zapisać w tabelce postaci:

\begin{array}{c|c|c|c|c}
x & 1 & 2 & 3 & 4 \\ \hline f(x) & 3 & 5 & 7 & 9 \end{array}



Wykres

Wykres to zobrazowanie odwzorowania f: X \to Y na dwuwymiarową płaszczyznę X,Y

Obrazek

Arytmetyka:

Logika matematyczna:

Geometria:

Funkcje:

Analiza matematyczna:

Algebra:

Rachunek prawdopodobieństwa:

 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl